With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.768-11-6,5-Bromobenzothiazole,as a common compound, the synthetic route is as follows.
A solution of 5-bromo-l,3-benzothiazole (0.148 mmol) in anhydrous dioxane (1 mL) was treated with bis(pinocolato)diboron (0.141 mmol), dichloro[l ,l ‘- bis(diphenylphosphino)ferrocene]palladium(II)-dichloromethane adduct (5.7 mg), and potassium acetate (0.423 mmol). The reaction mixture was purged with nitrogen gas, sealed, and stirred at 100 C for 1 h. The black reaction mixture was then cooled to room temperature, and analysis by LC/MS confirmed the conversion of the starting material to its boronate ester. The solution was then treated with 2-(4-bromophenyl)-l-{[(3S)-l- (cyclopropylcarbonyl)-3-pyrrolidinyl]methyl}-lH-imidazo[4,5-c]pyridine (0.141 mmol), dichloro[l,l ‘-bis(diphenylphosphino)ferrocene]palladium(II)-dichloromethane adduct (5.7 mg), and 2M aq potassium carbonate (0.42 mmol). The reaction mixture was purged with nitrogen, sealed, and stirred at 100 C overnight. The reaction mixture was cooled to room temperature and was diluted with water (50 mL). The aqueous layer was acidified to pH ~7 using IN aq HC1 and was extracted with dichloromethane. The organic layer was dried over magnesium sulfate, filtered, and concentrated in vacuo. The brown residue was purified by reverse phase HPLC (LUNA C-18: 30×50 mm column; 0- 30% acetonitrile w/ 0.1% TFA/water w/ 0.1% TFA). The product fractions were neutralized with the addition of saturated aq sodium bicarbonate, concentrated under reduced pressure, and extracted with dichloromethane. The combined organic layers were dried over magnesium sulfate, filtered, and concentrated in vacuo to afford the title compound as a beige solid (20 mg, 28%). MS(ES)+ m/e 480.1 [M+H]+.
768-11-6 5-Bromobenzothiazole 3610155, athiazole compound, is more and more widely used in various.
Reference£º
Patent; GLAXOSMITHKLINE LLC; CHAUDHARI, Amita, M.; HALLMAN, Jason; LAUDEMAN, Christopher, P.; MUSSO, David, Lee; PARRISH, Cynthia, A.; WO2011/66211; (2011); A1;,
Thiazole | C3H3NS – PubChem
Thiazole | chemical compound | Britannica