With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.63837-11-6,5-Bromo-2-methylbenzothiazole,as a common compound, the synthetic route is as follows.
63837-11-6, EXAMPLE 56A 5-bromo-2-ethyl-1,3-benzothiazole A 0 C. solution of diisopropylamine (340 muL, 2.41 mmol) in THF (3 mL) was treated with 2.5M n-butyllithium in hexanes (0.88 mL), stirred for 20 minutes, added to a -78 C. solution of 5-bromo-2-methyl-1,3-benzothiazole (250 mg, 1.10 mmol) in THF (3 mL), stirred for 30 minutes, treated with iodomethane (340 muL, 5.50 mmol), and stirred for 1 hour. The mixture was diluted with ethyl acetate (50 mL), washed sequentially with 1M HCl (5 mL), water (5 mL), and brine (5 mL), dried (MgSO4), filtered, and concentrated. The concentrate was purified by flash column chromatography on silica gel with 30% hexanes/dichloromethane to provide the desired product. MS (DCI) m/e 242 (M+H)+.
63837-11-6 5-Bromo-2-methylbenzothiazole 3017457, athiazole compound, is more and more widely used in various fields.
Reference£º
Patent; Augeri, David J.; Baumeister, Steven A.; Bruncko, Milan; Dickman, Daniel A.; Ding, Hong; Dinges, Jurgen; Fesik, Stephen W.; Hajduk, Philip J.; Kunzer, Aaron R.; McClellan, William; Nettesheim, David G.; Oost, Thorsten; Petros, Andrew M.; Rosenberg, Saul H.; Shen, Wang; Thomas, Sheela A.; Wang, Xilu; Wendt, Michael D.; US2002/55631; (2002); A1;,
Thiazole | C3H3NS – PubChem
Thiazole | chemical compound | Britannica