New learning discoveries about 3622-35-3

3622-35-3, The synthetic route of 3622-35-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.3622-35-3,Benzo[d]thiazole-6-carboxylic acid,as a common compound, the synthetic route is as follows.

Benzothiazole-6-carboxylic acid (142 mg, 0.792 mmol) was stirred in DCM (15 mL), DIPEA (0.82 mL, 4.8 mmol) and HBTU (300 mg, 0.792 mmol) were added. Stirring was continued for 0.5 h at RT. Intermediate 25 (250 mg, 0.792 mmol) was added to the solution and stirring was continued for 2 h at RT. NaOH solution (IN, 1 mL) was added and stirred for 5 min. The product filtered on an extrelute filter and the filtrate was evaporated. The product was purified on silica gel, eluent: DCM -> 4% MeOH in DCM. The pure fractions were evaporated to give a mixture of compounds 25a and 25b (340 mg). This was purified via Prep SFC (Stationary phase: Chiralcel Diacel OD 20 x 250 mm, Mobile phase: C02, EtOH + 0.4 iPrNH2) to give both products which were crystallized from Et20 and afforded Co. No. 25a (121 mg, 35%) and Co. No. 25b (128 mg, 37%).

3622-35-3, The synthetic route of 3622-35-3 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; JANSSEN PHARMACEUTICA NV; VAN ROOSBROECK, Yves, Emiel, Maria; VAN DEN KEYBUS, Frans, Alfons, Maria; TRESADERN, Gary, John; BUIJNSTERS, Peter, Jacobus, Johannes, Antonius; VELTER, Adriana, Ingrid; JACOBY, Edgar; MACDONALD, Gregor, James; GIJSEN, Henricus, Jacobus, Maria; AHNAOU, Abdellah; DRINKENBURG, Wilhelmus, Helena, Ignatius, Maria; (216 pag.)WO2018/83098; (2018); A1;,
Thiazole | C3H3NS – PubChem
Thiazole | chemical compound | Britannica

New learning discoveries about 40283-41-8

As the paragraph descriping shows that 40283-41-8 is playing an increasingly important role.

40283-41-8, 2-Aminothiazole-4-carboxylic acid is a thiazole compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Preparation of 2-chlorothiazole-4-carboxylic acid To a solution of 2.84 g (19.7 mmol) of 2-aminothiazole-4-carboxylic acid in 30 ml of 1,4-dioxane was added 50 ml of concentrated hydrochloric acid, followed by cooling to 0C, and 10 ml of an aqueous solution of 2.04 g (29.6 mmol) of sodium nitrite was added charged dropwise thereto at 0C to 5C. The reaction liquid was stirred at 0C for 2 hours, and then 2.93 g (29.6 mmol) of copper chloride was charged in separate portions thereto. The reaction liquid was returned to room temperature, followed by stirring for 8 hours. To the reaction liquid were added water and ethyl acetate, followed by extraction with ethyl acetate four times. The organic layer was washed with saturated brine, and then dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to prepare 1.77 g (yield 55%) of a target compound. 1H-NMR (DMSO-d6, ppm) delta 8.41 (1H, s). The proton of the carboxylic acid was not detected., 40283-41-8

As the paragraph descriping shows that 40283-41-8 is playing an increasingly important role.

Reference:
Patent; Mitsui Chemicals Agro, Inc.; EP2319830; (2011); A1;,
Thiazole | C3H3NS – PubChem
Thiazole | chemical compound | Britannica

Simple exploration of 939-69-5

The synthetic route of 939-69-5 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.939-69-5,6-Hydroxybenzo[d]thiazole-2-carbonitrile,as a common compound, the synthetic route is as follows.

D-2-(6′-Hydroxybenzothiazol-2′-yl)-D2-5-(2,6-dibromo-4-cyanophenoxy)methylthiazoline-4-carboxylic acid.. A solution of 2-cyano-6-hydroxybenzthiazole (2.0 eq.) in MeOH is purged with nitrogen for 5 minutes.. A solution of (2R,3S)-2-amino-4-(2,4-dibromo4-cyanophenyl)oxy-3-mercaptobutanoic acid trifluoroacetate (1.0 eq.) and potassium carbonate (1.0 eq.) in deoxygenated water is added to the methanol solution.. The reaction is stirred under nitrogen while being protected from light for 2 hours.. The volume of the reaction is doubled with water and the resulting solution is made acidic with dilute hydrochloric acid.. The mixture is extracted with ethyl acetate.. The extract is washed with water and dried over sodium sulfate.. The solvent is removed and the residue is triturated with ether.. The residue is dried in vacuo to yield the title compound., 939-69-5

The synthetic route of 939-69-5 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Marker Gene Technologies, Inc.; US6656917; (2003); B1;,
Thiazole | C3H3NS – PubChem
Thiazole | chemical compound | Britannica

Brief introduction of 14190-59-1

14190-59-1, 14190-59-1 Thiazole-2-carboxylic acid 2762733, athiazole compound, is more and more widely used in various fields.

14190-59-1, Thiazole-2-carboxylic acid is a thiazole compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Thiazole-2-carboxylic acid (3-acetyl-2, 4-difluoro-phenyl)-amide, which has the structural formula was made as follows. To thiazole-2-carboxylic acid (491 mg, 3.80 mmol ; Metzger, et AL., Bull. Soc. Chim. Fr. , 708-709 (1953) and FOR 1H NMR, see Borgen et AL., Acta. Chem. Scand. , 20; 2593-2600 (1966) ) in THF (2 mL) was added 0- (7- AZABENZOTRIAZOL-1-YL)-N, N, N’, N’-tetramethyluronium hexafluorophosphate (HATU; 1.45 g, 3.81 MMOL), followed by addition of 3′-amino-2′, 6 -DIFLUORO-ACETOPHENONE (from Example H (1) ; 542 mg, 3.36 MMOL) and triethylamine (0.88 mL, 6.3 MMOL). The mixture stirred under argon overnight, then partitioned between ethyl acetate and sat. aq. NA2CO3. The organic layer was separated, washed with 1 N HCI, dried over NA2SO4, and concentrated to afford a residue that was purified via column chromatography to afford 823 mg (92percent yield) of white solid, which was used without further purification. 1H NMR: 8 9. 33 (1H, bs), 8.54 (1H, td, J = 5.7, 9.0 Hz), 7.96 (1H, d, J = 3.1 Hz), 7.67 (1H, d, J = 3. 1 Hz), 7.02 (1H, td, J = 1. 8,9. 0 HZ), 2.64 (3H, t, J = 1. 8 HZ). THIAZOLE-2-CARBOXYLIC acid [3- (2-BROMOACETYL)-2, 4-DIFLUORO-PHENYL]-AMIDE, which has the structural formula was made as follows. To THIAZOLE-2-CARBOXYLIC acid [3- (2- ACETYL)-2, 4-difluoro-phenyl]-amide (530 mg, 1.88 MMOL) in HOAC (5 mL) was added pyridinium tribromide (600 mg, 1.88 MMOL). The mixture was heated at 70 C for a half hour, allowed to cool, and partitioned between ether and water. The organic layer was separated, washed with water and sat. aq. NaHCO3, dried over MGS04, and concentrated in vacuo to give 645 mg (95percent) of white solid, which was used without further purification. 1H NMR: No. 9.53 (1H, bs), 8.63 (1H, td, J = 5.8, 9.0 Hz), 7.96 (1H, d, J = 3.1 Hz), 7.69 (1H, d, J = 3. 1 Hz), 7.07 (1H, td, J = 1. 9,9. 0 HZ), 4.38 (2H, d, J = 0. 8 HZ). The title compound was made analogously to 4- [4-AMINO-5- (2, 6-DIFLUORO-BENZOYL)- thiazol-2-ylamino]-benzenesulfonyl fluoride from Example A (1). 4-ISOTHIOCYANATO- benzenesulfonamide (142 mg, 0.663 MMOL) and thiazole-2-carboxylic acid [3- (2-bromoacetyl)- 2, 4-difluoro-phenyl]-amide (300 mg, 0. 831 MMOL) gave 245 mg (69percent yield) of a yellow solid. 1H NMR (DMSO-d6) : 8 11.19 (1 H, s), 10.60 (1 H, s), 8.45 (2H, bs), 8.17 (1H, d, J = 3.1 Hz), 8.13 (1H, d, J = 3. 1 Hz), 7.80 (1H, d, J = 9. 2 HZ), 7.76 (1H, d, J = 9. 2 HZ). HRESIMS : calcd. for C20H5F2N603S3 : 537.0285. Found: 537.0272. ANAL. CALCD. for C20HA4F2N604S3 0. 4 H2ONo.0. 1 EtOH : C, 44.24 ; H, 2.83 ; N, 15. 33; S, 17.54. Found: C, 44.23 ; H, 2.64 ; N, 15.16 ; S, 17.33.

14190-59-1, 14190-59-1 Thiazole-2-carboxylic acid 2762733, athiazole compound, is more and more widely used in various fields.

Reference:
Patent; PFIZER INC.; WO2004/72070; (2004); A1;,
Thiazole | C3H3NS – PubChem
Thiazole | chemical compound | Britannica

Downstream synthetic route of 3622-30-8

3622-30-8, The synthetic route of 3622-30-8 has been constantly updated, and we look forward to future research findings.

3622-30-8, 2,4-Dichlorobenzothiazole is a thiazole compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

EXAMPLE 164 (+)-(4aR)-(10bR)-4-methyl-8-(4-chloro-2-benzothiazolylthio)-10b-methyl-1,2,3,4,4a,5,6,10b-octahydrobenzo[f]quinolin-3-one A 15 mL round bottom flask was charged with (+)-(4aR)-(10bR)-4-methyl-8-mercapto-10b-methyl-1,2,3,4,4a,5,6,10b-octahydrobenzo[f]quinolin-3-one (100 mg, 0.38 mmol), potassium carbonate (158 mg, 1.14 mmol), 2,4-dichlorobenzothiazole (94 mg, 0.46 mmol) and 1 mL of anhydrous dimethyl formamide, fitted with a reflux condenser, and the stirred mixture was heated at 60°, under nitrogen, for 48 h. The mixture was cooled, diluted with ethyl acetate (75 mL) and washed with brine (2*25 mL). The combined organic extracts were dried over sodium sulfate, concentrated, and purified by silica gel chromatography (80percent ethyl acetate/hexanes eluent) to give 80 mg (49percent) of the title compound as an amorphous solid. mp 207°-209°. FDMS: m/e=429 alpha[D]589 =+63.86 (c=0.57, chloroform).

3622-30-8, The synthetic route of 3622-30-8 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; ELi Lilly and Company; US5629007; (1997); A;,
Thiazole | C3H3NS – PubChem
Thiazole | chemical compound | Britannica