With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14190-59-1,Thiazole-2-carboxylic acid,as a common compound, the synthetic route is as follows.
Compound 1 (3mmol), compound 2 (3mmol), N-ethyl-N’-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) (3.3mmol) and N,N-dimethyl pyridine (DMAP) (0.3mmol) were mixed with a molecular sieve, and the resulted mixture was cooled in ice bath (0°C). Then DMF and pyridine (4.5mmol) were added in turn. The progress of reaction was tracked by TLC. After the reaction was completed, the reactant was diluted with water and extracted with EtOAc. The solvent was removed completely by concentration. Then compound 3 was obtained through column chromatograph (yield 60percent). Subsequently, compound 3 (0.3mmol) was mixed with ammonium acetate (NH4OAc) (15mmol) and sodium acetate (NaOAc) (30mmol) and heated to 130°C, and the progress of reaction was tracked by TLC. Then the reactant was cooled to room temperature, and diluted with water, extracted with ethyl acetate. The solvent was removed completely by concentration. Then compound 4i (Wang279-1) was obtained by separation through column chromatograph with petroleum ether/ ethyl acetate (volume ratio 1:1) (yield 31percent).
14190-59-1, 14190-59-1 Thiazole-2-carboxylic acid 2762733, athiazole compound, is more and more widely used in various fields.
Reference:
Patent; Shanghai Institute of Materia Medica, Chinese Academy of Sciences; EP1889843; (2008); A1;,
Thiazole | C3H3NS – PubChem
Thiazole | chemical compound | Britannica