New learning discoveries about 3622-35-3

The synthetic route of 3622-35-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.3622-35-3,Benzo[d]thiazole-6-carboxylic acid,as a common compound, the synthetic route is as follows.

A solution of benzothiazole-6-carboxylic acid (4.48 g, 25.0 mmol), tert-butyl carbazate (3.63 g, 27.5 mmol), 3-(3-dimethylaminopropyl)-1-ethylcarbodiimide hydrochloride (5.75 g, 30.0 mmol) and 1-hydroxybenzotriazole (4.05 g, 30.0 mmol) in N,N-dimethylformamide (50 mL) was stirred overnight at room temperature. The reaction mixture was diluted with ethyl acetate, washed twice with water and once with saturated brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by basic silica gel column chromatography (ethyl acetate/tetrahydrofuran=2/1), and crystallized from hexane/acetone to give the title compound (5.51 g, yield 75%) as colorless crystals. melting point 128-129 C.1NMR (CDCl3) delta 1.52 (9H, s), 6.81 (1H, brs), 7.89 (1H, dd, J=1.7, 8.7 Hz), 8.12 (1H, d, J=8.7 Hz), 8.40 (1H, brs), 8.47 (1H, dd, J=0.6, 1.7 Hz), 9.12 (1H, s).Elemental analysis (for C13H15N3O3S)Calculated (%): C, 53.23; H, 5.15; N, 14.32.Found (%): C, 53.10; H, 5.13; N, 14.38., 3622-35-3

The synthetic route of 3622-35-3 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Itoh, Fumio; US2010/69381; (2010); A1;,
Thiazole | C3H3NS – PubChem
Thiazole | chemical compound | Britannica