The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III)(SMILESS: CC1=O[Ir+3]23([N]4=CC=C(C=CC=C5)C5=C4C6=CC=CC=[C-]36)(O=C(C)[CH-]1)[N]7=CC=C(C=CC=C8)C8=C7C9=CC=CC=[C-]29,cas:435294-03-4) is researched.HPLC of Formula: 17927-65-0. The article 《Determination of emitting dipole orientation in organic light emitting diodes》 in relation to this compound, is published in Organic Electronics. Let’s take a look at the latest research on this compound (cas:435294-03-4).
The dipole orientation of a light-emitting mol. dictates the external quantum efficiency (EQE) of an organic light emitting diode (OLED). In this paper, we studied both exptl. and theor. relationships between dipole orientation and measurable optical properties of working OLEDs. Theor. electroluminescence (EL) spectrum, EQE, and luminance angle distribution are simulated by incorporating the dipole radiation pattern into Fabry- Perot cavity theory with horizontal dipole ratio as a variable parameter. The horizontal ratio is determined by optimizing the fitness of theor. EL spectra to the exptl. data and EL angular distribution. We show that the optical model proposed in this paper describes well the emission dipole dependent device optical data including EL spectra, EQEs, and EL luminance angular distributions. The emission fill factor (EFF), defined as the area ratio of EL angular distribution to the Lambertian curve, is found to follow a linear relationship with horizontal dipole ratio. These results provide a simple guide to deduce dipole orientations in working OLEDs.
Here is a brief introduction to this compound(435294-03-4)COA of Formula: C35H27N2O2Ir, if you want to know about other compounds related to this compound(435294-03-4), you can read my other articles.
Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica