The Best Chemistry compound: 111-18-2

If you want to learn more about this compound(N1,N1,N6,N6-Tetramethylhexane-1,6-diamine)Name: N1,N1,N6,N6-Tetramethylhexane-1,6-diamine, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(111-18-2).

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Perfluorinated comb-shaped cationic polymer containing long-range ordered main chain for anion exchange membrane, published in 2020-03-10, which mentions a compound: 111-18-2, mainly applied to perfluorinated comb shaped cationic polymer long chain order; anion exchange membrane fuel cell, Name: N1,N1,N6,N6-Tetramethylhexane-1,6-diamine.

Achieving high ionic conductivity and alk. stability of anion exchange membranes (AEMs) is critical for anion exchange membrane fuel cells (AEMFCs). Here the authors described a method of preparing perfluorinated comb-shaped cationic polymers containing long-range ordered (LROed) -CF2CF2-(CF2CF2)n-CF2-CF2- main chain with pendant (-CF2CF2SONH-) side chain terminated by long comb-hydrophilic-cationic groups for AEMs application. Super-hydrophobic backbone promoted the formation of defined nano-phase separated channels and the resulted comb-shaped AEMs demonstrated ion conductivity of 88.6 mS cm-1 at 80° and kept low H2O uptake (17.1%) and excellent dimensional stability (7.0%). Chem. robust polymer skeleton reduced hydroxide ion attack at fixed cation group and 91.8% of initial values was retained after Hoffman elimination in 8 M KOH over 16 days at 80°. Also, a membrane electrode assembly (MEA) based on perfluorinated-comb AEMs showed a peak power d. of 306.1 mW cm-2 at 80° in a H2/O2 (CO2-free) fuel cells.

If you want to learn more about this compound(N1,N1,N6,N6-Tetramethylhexane-1,6-diamine)Name: N1,N1,N6,N6-Tetramethylhexane-1,6-diamine, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(111-18-2).

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica