Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 111-18-2, is researched, SMILESS is CN(C)CCCCCCN(C)C, Molecular C10H24N2Journal, Article, Chemistry – A European Journal called Direct Synthesis of Nanosheet-Stacked Hierarchical “”Honey Stick-like”” MFI Zeolites by an Aromatic Heterocyclic Dual-Functional Organic Structure-Directing Agent, Author is Wang, Risheng; Peng, Zhihua; Wu, Pingping; Lu, Jinzhi; Rood, Mark J.; Sun, Hongman; Zeng, Jingbin; Wang, Youhe; Yan, Zifeng, the main research direction is MIF zeolite nanosheet catalyst cyclohexane oxidation; Heterocycles; MFI zeolites; nanosheets; self-assembly; stacking interactions.Recommanded Product: 111-18-2.
Soft template designing is the most promising strategy for the synthesis of zeolite nanosheets. MFI nanosheets directed by soft templates (containing long-chain alkyl groups or aromatic groups as hydrophobic component) can be found frequently. However, so far, MFI nanosheets synthesized by soft templates with aromatic heterocycle groups (e. g., s-triazine groups) are rare. Herein, a nanosheet-stacked hierarchical MFI zeolite (NSHM) has been synthesized by using a triply branched s-triazine-based surfactant as a bifunctional organic structure-directing agent. On the basis of a geometrical match relationship, a formation model has been proposed. Synthesized NSHM had abundant mesopores stacked by nanosheets and exhibited a high surface area (430 m2 · g-1). The 1 wt% Pd/NSHM attained a significant increase in yield of cyclohexanol/cyclohexanone mixture (from 66 to 85 %) in the oxidation of cyclohexane compared with Silicalite-1 and SBA-15 as supports.
When you point to this article, it is believed that you are also very interested in this compound(111-18-2)Recommanded Product: 111-18-2 and due to space limitations, I can only present the most important information.
Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica