New downstream synthetic route of 111-18-2

Compounds in my other articles are similar to this one(N1,N1,N6,N6-Tetramethylhexane-1,6-diamine)COA of Formula: C10H24N2, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Effect of cross-linker length on performance of multication cross-linked poly(p-terphenyl isatin) anion exchange membranes for fuel cells, published in 2021-12-27, which mentions a compound: 111-18-2, mainly applied to crosslinker length fuel cell anion exchange membrane, COA of Formula: C10H24N2.

As a key component of anion exchange membrane fuel cells (AEMFCs), anion exchange membranes (AEMs) have been investigated in the last decades. Herein, a series of multication cross-linkers were introduced into side-chain-type poly(p-terphenyl isatin) to develop high-performance and long-term stable AEMs. Addnl., the effects of the hydrophilic cross-linker length on the membrane performance were systematically investigated. The resulting cross-linked membranes possess a low swelling ratio (<18% at 80 °C) and high tensile strength (51.1-58.3 MPa). Notably, the cross-linker length influences the AEM internal morphol. With hexyl as the spacer between backbones and cation groups in the cross-linker, 0.9q-PTI-6C exhibits the highest hydroxide ion conductivity of 118.5 mS/cm at 80 °C, which is ascribed to well-developed ion channels. Furthermore, alkyl spacer chains and cross-linked networks contribute to the excellent alkali stability of membranes. After immersion in 2 M NaOH for 1200 h at 80 °C, 0.9q-PTI-8C only shows 11 and 12.7% losses in ion conductivity and ion exchange capacity (IEC), resp. The fuel cell fabricated using 0.9q-PTI-6C can achieve the maximum power d. of 310 mW/cm2 at 80 °C. Compounds in my other articles are similar to this one(N1,N1,N6,N6-Tetramethylhexane-1,6-diamine)COA of Formula: C10H24N2, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica