Awesome Chemistry Experiments For 18362-64-6

Although many compounds look similar to this compound(18362-64-6)Application In Synthesis of 2,6-Dimethyl-3,5-heptanedione, numerous studies have shown that this compound(SMILES:CC(C)C(CC(C(C)C)=O)=O), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 18362-64-6, is researched, SMILESS is CC(C)C(CC(C(C)C)=O)=O, Molecular C9H16O2Journal, Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry called Coordination abilities in aqueous 1:1 metal chelates of 1,3-dicarbonylic ligands: absolute hardness and absolute electronegativity, Author is Blanco, Carlos A., the main research direction is transition metal ion stability constant dicarbonylic ligand; hardness transition metal ion stability constant dicarbonylic ligand; electronegativity transition metal ion stability constant dicarbonylic ligand.Application In Synthesis of 2,6-Dimethyl-3,5-heptanedione.

For a series of monochelates of metal and oxo-metal ions such as Ni2+, Co2+, Cu2+, Fe3+, Cr3+, VO2+, UO22+ with structurally similar 1,3-dicarbonylic ligands it has been found that the logarithms of stability constants are essentially linear functions of the ligand pK. Correlation data show that for a given transition metal ion it is possible to estimate approx. stability constants of a wide range of 1,3-dicarbonylic monochelates and, therefore, predict overall equilibrium constants Results have provided information concerning absolute hardness and absolute electronegativity of the metal ion considered against the stability of 1:1 chelates in aqueous solution

Although many compounds look similar to this compound(18362-64-6)Application In Synthesis of 2,6-Dimethyl-3,5-heptanedione, numerous studies have shown that this compound(SMILES:CC(C)C(CC(C(C)C)=O)=O), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica