In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Effects of small-molecule-doping on spin-assisted processes in P3DDT:PC61BM photovoltaics, published in 2020-09-30, which mentions a compound: 92-71-7, Name is 2,5-Diphenyloxazole, Molecular C15H11NO, Application of 92-71-7.
The effect of the 1,2-benzopyrone (BP) and 2,5-diphenyloxazole (PPO, DPO) additives on the formation, separation, motion, and recombination of charge carriers in the poly(3-dodecylthiophene):[6,6]-phenyl-C61-butanoic acid Me ester (P3DDT:PC61BM) organic photovoltaics was investigated by the light-induced ESR (LEPR) and NIR-Vis-UV spectroscopy within the wide temperature and photon energy range. These processes were interpreted in the framework of the exchange interaction of spin ensembles differently distributed in bulk heterojunctions of the P3DDT:PC61BM composite. The concentration, composition, and dynamics of spin charge carriers were shown to be determined by the modification degree of the sample with small mols., the energy of the light photons as well as the number, spatial distribution and energetic depth of spin traps formed in the disordered polymer matrix. Electronic functionality of the composite becomes better after its doping with BP and PPO additives up to optimal weight levels of 0.03 and 0.06, resp. Such modification can improve the morphol./ordering of the composite that increases the number of highly mobile charge carriers due to the release of a part of carriers captured by energetically deep spin traps. This increases an exchange interaction between spin ensembles, reduces the number and depth of electron spin traps that, in turn, prevents the recombination of charge carriers and accelerates the power conversion.
After consulting a lot of data, we found that this compound(92-71-7)Application of 92-71-7 can be used in many types of reactions. And in most cases, this compound has more advantages.
Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica