In 2016,Mikherdov, Alexander S.; Kinzhalov, Mikhail A.; Novikov, Alexander S.; Boyarskiy, Vadim P.; Boyarskaya, Irina A.; Dar’in, Dmitry V.; Starova, Galina L.; Kukushkin, Vadim Yu. published 《Difference in Energy between Two Distinct Types of Chalcogen Bonds Drives Regioisomerization of Binuclear (Diaminocarbene)PdII Complexes》.Journal of the American Chemical Society published the findings.Electric Literature of C3H3BrN2S The information in the text is summarized as follows:
The reaction of cis-[PdCl2(CNXyl)2] (Xyl = 2,6-Me2C6H3) with various 1,3-thiazol- and 1,3,4-thiadiazol-2-amines in chloroform gives a mixture of two regioisomeric binuclear diaminocarbene complexes. For 1,3-thiazol-2-amines the isomeric ratio depends on the reaction conditions and kinetically (KRs) or thermodynamically (TRs) controlled regioisomers were obtained at room temperature and on heating, resp. In CHCl3 solutions, the isomers are subject to reversible isomerization accompanied by the cleavage of Pd-N and C-N bonds in the carbene fragment XylNCN(R)Xyl. Results of DFT calculations followed by the topol. anal. of the electron d. distribution within the formalism of Bader’s theory (AIM method) reveal that in CHCl3 solution the relative stability of the regioisomers (ΔGexp = 1.2 kcal/mol; ΔGcalcd = 3.2 kcal/mol) is determined by the energy difference between two types of the intramol. chalcogen bonds, viz. S···Cl in KRs (2.8-3.0 kcal/mol) and S···N in TRs (4.6-5.3 kcal/mol). In the case of the 1,3,4-thiadiazol-2-amines, the regioisomers are formed in approx. equal amounts and, accordingly, the energy difference between these species is only 0.1 kcal/mol in terms of ΔGexp (ΔGcalcd = 2.1 kcal/mol). The regioisomers were characterized by elemental analyses (C, H, N), HRESI+-MS and FTIR, 1D (1H, 13C{1H}) and 2D (1H,1H-COSY, 1H,1H-NOESY, 1H,13C-HSQC, 1H,13C-HMBC) NMR spectroscopies, and structures of six complexes (three KRs and three TRs) were elucidated by single-crystal X-ray diffraction.5-Bromothiazol-2-amine(cas: 3034-22-8Electric Literature of C3H3BrN2S) was used in this study.
5-Bromothiazol-2-amine(cas: 3034-22-8) belongs to anime. Aniline, ethanolamines, and several other amines are major industrial commodities used in making rubber, dyes, pharmaceuticals, and synthetic resins and fibres and for a host of other applications. Most of the numerous methods for the preparation of amines may be broadly divided into two groups: (1) chemical reduction (replacement of oxygen with hydrogen atoms in the molecule) of members of several other classes of organic nitrogen compounds and (2) reactions of ammonia or amines with organic compounds.Electric Literature of C3H3BrN2S
Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica