Liu, Shuo’s team published research in Chemical Research in Chinese Universities in 2020 | CAS: 30931-67-0

ABTS Diammonium(cas: 30931-67-0) belongs to anime. Amines characteristically form salts with acids; a hydrogen ion, H+, adds to the nitrogen. With the strong mineral acids (e.g., H2SO4, HNO3, and HCl), the reaction is vigorous. Salt formation is instantly reversed by strong bases such as NaOH. Neutral electrophiles (compounds attracted to regions of negative charge) also react with amines; alkyl halides (R′X) and analogous alkylating agents are important examples of electrophilic reagents.Electric Literature of C18H24N6O6S4

《Programmable and Reversible Regulation of Catalytic Hemin@MOFs Activities with DNA Structures》 was written by Liu, Shuo; Yang, Mingjie; Guo, Weiwei. Electric Literature of C18H24N6O6S4 And the article was included in Chemical Research in Chinese Universities on April 30 ,2020. The article conveys some information:

Abstract: Metal-organic frameworks(MOFs)-based nanozyme plays an important role in biosensing, therapy and catalysis. In this study, the effects of single-stranded DNA(ssDNA) with programmable sequences and its complementary DNA(TDNA) on the intrinsic peroxidase-like activity of hemin loaded MOFs(UiO-66-2), denoted as hemin@UiO-66-NH2, were investigated. The hemin@UiO-66-2 exhibited improved catalytic activity compared with free hemin. However, the catalytic activity is inhibited in the presence of ssDNA, as ssDNA can be adsorbed by MOFs and therefore protected the active sites from contact with substrates. Upon the addition of the TDNA, double-stranded DNA(dsDNA) was formed and detached from the MOFs, resulting in the recovery of catalytic activity. Sequentially adding ssDNA or its complementary DNA strands can achieve the reversible regulation of the catalytic activity of MOFs nanozymes. Moreover, the DNA hybridization-based regulation was further applied to a cascaded catalytic system composed of the nanozyme, hemin@UiO-66-NH2, and glucose oxidase. These nanozyme based programmable and reversibly regulated catalytic systems may have potential applications in future smart biosensing and catalysis systems. In addition to this study using ABTS Diammonium, there are many other studies that have used ABTS Diammonium(cas: 30931-67-0Electric Literature of C18H24N6O6S4) was used in this study.

ABTS Diammonium(cas: 30931-67-0) belongs to anime. Amines characteristically form salts with acids; a hydrogen ion, H+, adds to the nitrogen. With the strong mineral acids (e.g., H2SO4, HNO3, and HCl), the reaction is vigorous. Salt formation is instantly reversed by strong bases such as NaOH. Neutral electrophiles (compounds attracted to regions of negative charge) also react with amines; alkyl halides (R′X) and analogous alkylating agents are important examples of electrophilic reagents.Electric Literature of C18H24N6O6S4

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica