Ma, Youchuan’s team published research in LWT–Food Science and Technology in 2021 | CAS: 30931-67-0

ABTS Diammonium(cas: 30931-67-0) belongs to anime. Halogenation, in which one or more hydrogen atoms of an amine is replaced by a halogen atom, occurs with chlorine, bromine, and iodine, as well as with some other reagents, notably hypochlorous acid (HClO). With primary amines the reaction proceeds in two stages, producing N-chloro- and N,N-dichloro-amines, RNHCl and RNCl2, respectively. With tertiary amines, an alkyl group may be displaced by a halogen.Quality Control of ABTS Diammonium

Quality Control of ABTS DiammoniumOn November 30, 2021 ,《Effect of ultrasound on mass transfer kinetics and phenolic compounds of apple cubes during osmotic dehydration》 appeared in LWT–Food Science and Technology. The author of the article were Ma, Youchuan; Yi, Jianyong; Bi, Jinfeng; Zhao, Yuanyuan; Li, Xuan; Wu, Xinye; Du, Qianqian. The article conveys some information:

This study investigated the impacts of ultrasound-assisted osmotic dehydration (UOD) with different frequency (40 kHz, 80 kHz, 40 + 80 kHz) and intensity (25 W/L, 50 W/L, 75 W/L) on the kinetics of mass transfer, phenolic losses and the antioxidant properties of apple cubes (8 mm). The mass transfer efficiency of solid gain (SG) was greater under dual-frequency (β = 0.413) than 40 kHz (β = 0.707) and 80 kHz (β = 0.793) under the same intensity. Moreover, the mass transfer efficiency of SG under 75 W/L 40 kHz UOD was higher than that of 25 W/L and 50 W/L UOD based on β values. Notably, the loss of phenolic content under 75 W/L UOD (18.9%) was substantially higher than that of the 25 W/L UOD treatment (1.2-1.8%). A UOD treatment of 50 W/L and 40 + 80 kHz is recommended to optimize mass transfer efficiency and phenolic retention of dehydrated apple cubes.ABTS Diammonium(cas: 30931-67-0Quality Control of ABTS Diammonium) was used in this study.

ABTS Diammonium(cas: 30931-67-0) belongs to anime. Halogenation, in which one or more hydrogen atoms of an amine is replaced by a halogen atom, occurs with chlorine, bromine, and iodine, as well as with some other reagents, notably hypochlorous acid (HClO). With primary amines the reaction proceeds in two stages, producing N-chloro- and N,N-dichloro-amines, RNHCl and RNCl2, respectively. With tertiary amines, an alkyl group may be displaced by a halogen.Quality Control of ABTS Diammonium

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica