Mechri, Sondes; Jaballi, Imen; Ben Taheur, Fadia; Jabeur, Fadoua; Elloumi, Jihen; Bejar, Wacim; Mansour, Chalbia; Hajji, Mohamed; Fetoui, Hamadi; Mzoughi, Ridha; Chaieb, Kamel; Jaouadi, Bassem published an article in Waste and Biomass Valorization. The title of the article was 《Anti-Biofilm, Antioxidant and Cytotoxic Potential of F5, a Peptide Derived from Waste Generated During the Processing of the White Shrimp, Metapenaeus monoceros (Fabricius, 1798)》.Application In Synthesis of ABTS Diammonium The author mentioned the following in the article:
In previous research works, we have described the production of 7 kDa F5 peptide after a hydrolysis of the white shrimp, Metapenaeus monoceros (Fabricius, 1798) byproduct, using a serine alk. protease (SPVP) purified from Aeribacillus pallidus strain VP3. The present study aims to explore the antioxidative potentials of F5 peptide by both in vitro and in vivo assays. The anti-biofilm activity was performed, showing 50% inhibition at 2μg/mL, 3μg/mL, 19μg/mL, and 45μg/mL for Staphylococcus aureus, Escherichia coli, Bacillus cereus, and Pseudomonas aeruginosa, resp. Consistently, the antioxidative capacity was tested in vitro against 2,2′-azino-bis-(3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS) cation radical, β-caroten-linoleic acid bleaching, chelating capacity of ferrous ion, and ferric reducing power assays. The cytotoxic effects of F5 peptide on the Human embryonic kidney HEK293 cells were subsequently tested. Remarkably, the F5 peptide was able to improve significantly HEK293 cell viability. To further assess this bioactivity, an in vivo study was performed on adult mice models. The animals were divided into three groups: controls, 100 mg and 200 mg of F5/kg per bodyweight. Indeed, the F5 peptide could prevent the lipid and protein oxidation damage in kidney cells, improving the antioxidative enzymic and non-enzymic capacities. In the experiment, the researchers used ABTS Diammonium(cas: 30931-67-0Application In Synthesis of ABTS Diammonium)
ABTS Diammonium(cas: 30931-67-0) belongs to anime. Reduction of nitro compounds, RNO2, by hydrogen or other reducing agents produces primary amines cleanly (i.e., without a mixture of products), but the method is mostly used for aromatic amines because of the limited availability of aliphatic nitro compounds. Reduction of nitriles and oximes (R2C=NOH) also yields primary amines.Application In Synthesis of ABTS Diammonium
Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica