Novel therapeutic strategies targeting telomere maintenance mechanisms in high-risk neuroblastoma was written by George, S. L.;Parmar, V.;Lorenzi, F.;Marshall, L. V.;Jamin, Y.;Poon, E.;Angelini, P.;Chesler, L.. And the article was included in Journal of Experimental & Clinical Cancer Research in 2020.HPLC of Formula: 63208-82-2 The following contents are mentioned in the article:
A review. Abstract: The majority of high-risk neuroblastomas can be divided into three distinct mol. subgroups defined by the presence of MYCN amplification, upstream TERT rearrangements or alternative lengthening of telomeres (ALT). The common defining feature of all three subgroups is altered telomere maintenance; MYCN amplification and upstream TERT rearrangements drive high levels of telomerase expression whereas ALT is a telomerase independent telomere maintenance mechanism. As all three telomere maintenance mechanisms are independently associated with poor outcomes, the development of strategies to selectively target either telomerase expressing or ALT cells holds great promise as a therapeutic approach that is applicable to the majority of children with aggressive disease. Here we summarise the biol. of telomere maintenance and the mol. drivers of aggressive neuroblastoma before describing the most promising therapeutic strategies to target both telomerase expressing and ALT cancers. For telomerase-expressing neuroblastoma the most promising targeted agent to date is 6-thio-2′-deoxyguanosine, however clin. development of this agent is required. In osteosarcoma cell lines with ALT, selective sensitivity to ATR inhibition has been reported. However, we present data showing that in fact ALT neuroblastoma cells are more resistant to the clin. ATR inhibitor AZD6738 compared to other neuroblastoma subtypes. More recently a number of addnl. candidate compounds have been shown to show selectivity for ALT cancers, such as Tetra-Pt (bpy), a compound targeting the telomeric G-quadruplex and pifithrin-α, a putative p53 inhibitor. Further pre-clin. evaluation of these compounds in neuroblastoma models is warranted. In summary, telomere maintenance targeting strategies offer a significant opportunity to develop effective new therapies, applicable to a large proportion of children with high-risk neuroblastoma. In parallel to clin. development, more pre-clin. research specifically for neuroblastoma is urgently needed, if we are to improve survival for this common poor outcome tumor of childhood. This study involved multiple reactions and reactants, such as 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2HPLC of Formula: 63208-82-2).
2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. The thiazole ring is notable as a component of the vitamin thiamine (B1). Thiazole is a versatile building block for the construction and lead generation of new drug discoveries. Numerous diazole-based compounds are in clinical use as anticancer, antileukemic, antiinflammatory, antiviral, antifungal, antirheumatic, immunomodulator, and antiparasitic agents.HPLC of Formula: 63208-82-2
Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica