Lin, Xiao-Min et al. published their research in International Journal of Molecular Sciences in 2021 | CAS: 38215-36-0

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. The higher aromaticity of thiazole is due to delocalization of a lone pair of sulfur electrons across the ring, which is evidenced by chemical shifts of ring hydrogen at δ 7.27 and 8.77 ppm (C2 and C4), indicating diamagnetic ring current. The pyridine-type nitrogen in the thiazole ring deactivates the ring for electrophilic substitution reactions, which is further reduced in acid due to protonation of the thiazole ring.Computed Properties of C20H18N2O2S

Construction of IL-13 Receptor alpha2-Targeting Resveratrol Nanoparticles against Glioblastoma Cells: Therapeutic Efficacy and Molecular Effects was written by Lin, Xiao-Min;Shi, Xiao-Xiao;Xiong, Le;Nie, Jun-Hua;Ye, Hai-Shan;Du, Jin-Zi;Liu, Jia. And the article was included in International Journal of Molecular Sciences in 2021.Computed Properties of C20H18N2O2S The following contents are mentioned in the article:

Glioblastoma multiforme (GBM) is the most common lethal primary brain malignancy without reliable therapeutic drugs. IL-13Rα2 is frequently expressed in GBMs as a mol. marker. Resveratrol (Res) effectively inhibits GBM cell growth but has not been applied in vivo because of its low brain bioavailability when administered systemically. A sustained-release and GBM-targeting resveratrol form may overcome this therapeutic dilemma. To achieve this goal, encapsulated Res 30 ± 4.8 nm IL-13Rα2-targeting nanoparticles (Pep-PP@Res) were constructed. UV spectrophotometry revealed prolonged Res release (about 25%) from Pep-PP@Res in 48 h and fluorescent confocal microscopy showed the prolonged intracellular Res retention time of Pep-PP@Res (>24 h) in comparison with that of free Res (<4 h) and PP@Res (<4 h). MTT and EdU cell proliferation assays showed stronger suppressive effects of Pep-PP@Res on rat C6 GBM cells than that of PP@Res (p = 0.024) and Res (p = 0.009) when used twice for 4 h/day. Pep-PP@Res had little toxic effect on normal rat brain cells. The in vivo anti-glioblastoma effects of Res can be distinctly improved in the form of Pep-PP@Res nanoparticles via activating JNK signaling, upregulating proapoptosis gene expression and, finally, resulting in extensive apoptosis. Pep-PP@Res with sustained release and GBM-targeting properties would be suitable for in vivo management of GBMs. This study involved multiple reactions and reactants, such as 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0Computed Properties of C20H18N2O2S).

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. The higher aromaticity of thiazole is due to delocalization of a lone pair of sulfur electrons across the ring, which is evidenced by chemical shifts of ring hydrogen at δ 7.27 and 8.77 ppm (C2 and C4), indicating diamagnetic ring current. The pyridine-type nitrogen in the thiazole ring deactivates the ring for electrophilic substitution reactions, which is further reduced in acid due to protonation of the thiazole ring.Computed Properties of C20H18N2O2S

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica