Multicolor Light Mixing in Optofluidic Concave Interfaces for Anticounterfeiting with Deep Learning Authentication was written by Wang, Chenlu;Yan, Zhiyuan;Gong, Chaoyang;Xie, Hui;Qiao, Zhen;Yuan, Zhiyi;Chen, Yu-Cheng. And the article was included in ACS Applied Materials & Interfaces in 2022.Safety of 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one The following contents are mentioned in the article:
Anticounterfeiting technol. has received tremendous interest for its significance in daily necessities, medical industry, and high-end products. Confidential tags based on photoluminescence are one of the most widely used approaches for their vivid visualization and high throughput. However, the complexity of confidential tags is generally limited to the accessibility of inks and their spatial location; generating an infinite combination of emission colors is therefore a challenging task. Here, we demonstrate a concept to create complex color light mixing in a confined space formed by microscale optofluidic concave interfaces. Infinite color combination and capacity were generated through chaotic behavior of light mixing and interaction in an ininkjet-printed skydome structure. Through the chaotic mixing of emission intensity, wavelength, and light propagation trajectories, the visionary patterns serve as a highly unclonable label. Finally, a deep learning-based machine vision system was built for the authentication process. The developed anticounterfeiting system may provide inspiration for utilizing space color mixing in optical security and communication applications. This study involved multiple reactions and reactants, such as 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0Safety of 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one).
3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. Thiazoles are a class of five-membered rings containing nitrogen and sulfur with excellent antitumor, antiviral and antibiotic activities. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Safety of 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one
Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica