Analyzing the synthesis route of 10200-59-6

10200-59-6 2-Thiazolecarboxaldehyde 2734903, athiazole compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.10200-59-6,2-Thiazolecarboxaldehyde,as a common compound, the synthetic route is as follows.

To a solution of n-BuLi (8.4 ml, 1.6 mol/l, 13.4 mmol) in THF (30 mL) was added 2-bromothiazole (377 mg, 2.12 mmol) dropwise under nitrogen atmosphere at -70¡ã C., and the mixture was stirred at the temperature for 1 h. Then DMF (1.4 ml, 18.3 mmol) was added into the solution dropwise under nitrogen atmosphere at -70¡ã C. The resulting mixture was stirred at the temperature for 1 h. Then the mixture was quenched with aqueous saturated ammonium chloride, diluted with ethyl acetate and water, and the phases were separated. The organic phase was washed with brine, dried over sodium sulfate, filtered and concentrated to give yellow oil. The yellow oil was dissolved in methanol (15 ml), cooled to -60¡ã C., and sodium borohydride (463 mg, 12.2 mmol) was added portionwise under nitrogen atmosphere. The mixture was stirred at the temperature for 1 h. The reaction was quenched with acetone and concentrated. The residue was diluted with ethyl acetate and water, and the phases were separated. The organic layer was dried over sodium sulfate, filtered and concentrated, then purified by silica gel chromatography eluting with petroleum/ethyl acetate=3:1 to give thiazol-2-ylmethanol (230 mg, 16.4percent yield) as brown oil. LCMS MH+ 116.

10200-59-6 2-Thiazolecarboxaldehyde 2734903, athiazole compound, is more and more widely used in various.

Reference£º
Patent; HYDRA BIOSCIENCES, INC.; Chenard, Bertrand L.; Gallaschun, Randall J.; Kimball, Spencer David; US2014/275528; (2014); A1;,
Thiazole | C3H3NS – PubChem
Thiazole | chemical compound | Britannica