Some tips on 15864-32-1

As the paragraph descriping shows that 15864-32-1 is playing an increasingly important role.

15864-32-1, 2-Amino-6-bromobenzothiazole is a thiazole compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

15864-32-1, Commercially available 2-amino-6-bromobenzothiazole (2 g, 8.7 mmol) was diluted into methylene chloride (15 mL), combined with DMAP (1.1 g, 8.7 mmol) in tetrahydrofuran (10 mL), and treated with di-tert-butyl dicarbonate (2.1 g, 9.6 mmol) at 0 0C. The reaction mixture was warmed to room temperature and aged overnight. The mixture was then filtered, the filtrate concentrated in vacuo, and the solid purified by flash column chromatography (Biotage, SiO2, 5-10% EtOAc-hexane) to provide the tert-butylcarbamate-protected bromide intermediate. Commercially available methyl anthramlate was converted to the desired acrylamide using acryolyl chloride under similar conditions described in EXAMPLE 17. This acrylamide methyl ester (69 mg, 0.33 mmol) was then combined with the tert- butylcarbamate-protected bromide intermediate (110 mg, 0.33 mmol), diluted into dry degassed DMF (5 mL), treated with powdered sieves, t?ethylamine (0.14 mL, 0.99 mmol), Bu4NCl (92 mg, 0.33 mmol), palladium acetate (20 mg), P(O-tolyl)3 (40 mg), and the reaction mixture heated to 100 0C for 15 h in a sealed tube. The reaction mixture was cooled to room temperature and directly purified by flash column chromatography (Biotage, SiO2, 5-50% EtOAc-hexane) to provide the acrylamide methyl ester. This acrylamide intermediate (90 mg, 0.2 mmol) was reduced by the addition of p-toluenesulfonyl hydrazide (370 mg, 2.0 mmol) in methanol (50 mL). The reaction mixture was refluxed for 24 h, treated again with p-toluenesulfonyl hydrazide (200 mg, 1.1 mmol) and refluxed for an additional 24 h. The reaction mixture was then cooled to room temperature, and the product purified via preparative RPHPLC. The methyl ester intermediate (46 mg, 0 1 mmol) was then saponified with LiOH (IM, 2 mL) in (3 : 1 : 1) THF- MeOH-H2O (2 mL) for 4 h. The reaction mixture was then concentrated in vacuo, diluted with water (20 mL), extracted with chloroform (15 mL), the aqueous phase separated, acidified with cone. HCl to pH 3, and then extracted with 30% isopropanol-chloroform (50 mL). The organic partition was separated, dried over anhydrous sodium sulfate, concentrated in vacuo, and the residue was purified via preparative RPHPLC to give the desired product: 1H NMR (DMSO-d6, 500 MHz) delta 11.7 (s, IH), 11.2 (s, 1H), 8.44 (d, 1H), 7 94 (d, 1H), 7.79 (s, 1H), 7.57 (d, 1H), 7.53 (d, 1H), 7.28 (dd, 1H), 7.12 (t, 1H), 3.02 (t, 2H), 2 75 (t, 2H), 1.47 (s, 9H); LCMS m/z 440 (M+-1).

As the paragraph descriping shows that 15864-32-1 is playing an increasingly important role.

Reference:
Patent; MERCK & CO., INC.; WO2006/52555; (2006); A2;,
Thiazole | C3H3NS – PubChem
Thiazole | chemical compound | Britannica