The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 2,6-Dimethyl-3,5-heptanedione( cas:18362-64-6 ) is researched.Computed Properties of C9H16O2.Calmon, Jean P. published the article 《Thermodynamic functions of enolization of aliphatic β-diketone》 about this compound( cas:18362-64-6 ) in Comptes Rendus des Seances de l’Academie des Sciences, Serie C: Sciences Chimiques. Keywords: diketone enolization thermodn functions; enolization thermodn functions diketone. Let’s learn more about this compound (cas:18362-64-6).
The following data were determined (β-diketone, % enol form at 33°C. equilibrium constant for the keto-enol tautomer at 33°C., enthalpy of enolization -ΔH in kcal./mole, and entropy of enolization -ΔS at 33°C. in cal./mole/°K.): Ac2CH2, 79.5, 3.89, 2.8, 6.45; AcCH2COEt, 80.5, 4.09, 3.0, 7.0; iso-PrCOCH2Ac, 89, 7.88, 3.2, 6.35; iso-BuCOCH2Ac, 90, 8.87, 3.3, 6.45; tert-BuCOCH2Ac, 93.5, 14.30, 3.9, 7.45; tert-BuCH2COCH2Ac, 94, 15.65, 3.45, 5.8; iso-BuCOCH2COEt, 90.5, 9.81, 3.7, 7.55; iso-BuCOCH2COPr, 92, 11.40, 3.4, 6.3; iso-BuCOCH2COPr-iso, 95, 20.30, 4.45, 8.55; (iso-BuCO)2CH2, 93.5, 14.60, 3.3, 5.8; (iso-PrCO)2CH2, 94, 15.95, 3.7, 6.6; tert-BuCOCH2COPr-iso, 96, 23.15, 4.65, 8.95; (tert-BuCO)2CH2, 98.5, 58.9, 4.9, 8.25. The data were determined from the N.M.R. spectra of the β-diketone. The variations in the entropies are attributed to resonance stabilization of the enol form and to the steric effects of the substituents which destabilize the keto form. The strong neg. entropy is explained by a chelated enolic structure which is more rigid than the diketo form.
In some applications, this compound(18362-64-6)Computed Properties of C9H16O2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.
Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica