Ikeda, Yuma; Nomoto, Takahiro; Hiruta, Yuki; Nishiyama, Nobuhiro; Citterio, Daniel published the artcile< Ring-Fused Firefly Luciferins: Expanded Palette of Near-Infrared Emitting Bioluminescent Substrates>, Computed Properties of 2591-17-5, the main research area is ring fused firefly luciferin near IR emitting bioluminescence substrate.
Firefly bioluminescence is broadly applied as a noninvasive imaging modality in the biomedical research field. One limitation in firefly bioluminescence imaging is the limited variety of luciferins emitting in the near-IR (NIR) region (650-900 nm), where tissue penetration is high. Herein, we describe a series of structure-inherent NIR emitting firefly luciferin analogs, NIRLucs, designed through a ring fusion strategy. This strategy resulted in pH-independent structure-inherent NIR emission with a native firefly luciferase, which was theor. supported by quantum chem. calculations of the oxidized form of each luciferin. When applied to cells, NIRLucs displayed dose-independent improved NIR emission even at low concentrations where the native D-luciferin substrate does not emit. Addnl., excellent blood retention and brighter photon flux (7-fold overall, 16-fold in the NIR spectral range) than in the case of D-luciferin have been observed with one of the NIRLucs in mice bearing s.c. tumors. We believe that these synthetic luciferins provide a solution to the longstanding limitation in the variety of NIR emitting luciferins and pave the way to the further development of NIR bioluminescence imaging platforms.
Analytical Chemistry (Washington, DC, United States) published new progress about Bioluminescence. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Computed Properties of 2591-17-5.
Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica