Ling, Xing’s team published research in Journal of Organic Chemistry in 2022-02-18 | 1003-32-3

Journal of Organic Chemistrypublished new progress about Acids Role: RCT (Reactant), RACT (Reactant or Reagent). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Application In Synthesis of 1003-32-3.

Ling, Xing; Lu, Weiwei; Miao, Lin; Marcaurelle, Lisa A.; Wang, Xuan; Ding, Yun; Lu, Xiaojie published the artcile< Divergent On-DNA Transformations from DNA-Linked Piperidones>, Application In Synthesis of 1003-32-3, the main research area is DNA linked heterocycle preparation.

A group of highly efficient and divergent transformations for constructing multiple DNA-linked chemotypes based on piperidones e.g., I core is successfully developed. The first procedure for the synthesis of DNA-conjugated piperidines II (R = H, Bn, (4-cyanophenyl)methyl, (3,4,5-trifluorophenyl)methyl, etc.; R1 = 2,2-dimethoxyethyl, Bn, 3-cyclohexylpropanoyl, etc.) intermediate under basic conditions was reported. Subsequently, this substructure was subjected to addnl. reactions to generate several privileged scaffolds, including 4-aminopiperidines II, fused [1,2,4]triazolo[1,5-a]pyrimidines III (R2 = methanesulfonyl, (3-fluorophenyl)methyl, benzenesulfonamido), and a quinoline derivative e.g., IV. These transformations paved the way for constructing focused scaffold-based DNA-encoded libraries with druglike properties.

Journal of Organic Chemistrypublished new progress about Acids Role: RCT (Reactant), RACT (Reactant or Reagent). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Application In Synthesis of 1003-32-3.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Din Reshi, Noor U’s team published research in Applied Organometallic Chemistry in 2019 | 171877-39-7

Applied Organometallic Chemistrypublished new progress about Alcohols Role: SPN (Synthetic Preparation), PREP (Preparation). 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, COA of Formula: C10H11NS2.

Din Reshi, Noor U.; Senthurpandi, Dineshchakravarthy; Samuelson, Ashoka G. published the artcile< Asymmetric transfer hydrogenation of ketones using Ru(0) nanoparticles modified by Chiral Thiones>, COA of Formula: C10H11NS2, the main research area is ketone asym transfer hydrogenation; oxazolidinethione thiozolidinethione ruthenium half sandwich complex catalyst preparation.

The catalytic asym. transfer hydrogenation (ATH) of acetophenone in isopropanol by Ru(0) nanoparticles (NPs) obtained by the in-situ reduction of Ru(II) half-sandwich complexes of chiral 2-oxazolidinethiones and 2-thiozolidinethiones was examined and compared with the catalytic activity of Ru(0) NPs formed in-situ by the reduction of [Ru(p-cymene)(Cl)2]2 in presence of optically active ligands such as (S)-4-isobutylthiazolidine-2-thione, (S)-4-isopropyl-2(-2-pyridinyl)-2-oxazoline, (8S, 9R)-(-)-cinchonidine, (S)-leucinol, (S)-phenylalaninol, and (S)-leucine. Three of the best catalytic systems were then examined for ATH of thirteen aromatic ketones with different electronic and steric properties. A maximum of 24% ee was obtained using NPs generated from the Ru (II) half-sandwich complex with (S)-4-isobutylthiazolidine-2-thione in the TH of acetophenone. The NPs were characterized by TEM and DLS measurements. Kinetic studies and poisoning experiments confirmed that the reaction is catalyzed by the chiral NPs formed in-situ. Complete characterization of the complexes, including the X-ray crystallog. characterization of two complexes, was also carried out.

Applied Organometallic Chemistrypublished new progress about Alcohols Role: SPN (Synthetic Preparation), PREP (Preparation). 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, COA of Formula: C10H11NS2.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Tao, Zhi-Fu’s team published research in Bioorganic & Medicinal Chemistry Letters in 2007-12-01 | 1003-32-3

Bioorganic & Medicinal Chemistry Letterspublished new progress about Antitumor agents. 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, HPLC of Formula: 1003-32-3.

Tao, Zhi-Fu; Chen, Zehan; Bui, Mai-Ha; Kovar, Peter; Johnson, Eric; Bouska, Jennifer; Zhang, Haiying; Rosenberg, Saul; Sowin, Thomas; Lin, Nan-Horng published the artcile< Macrocyclic ureas as potent and selective Chk1 inhibitors: An improved synthesis, kinome profiling, structure-activity relationships, and preliminary pharmacokinetics>, HPLC of Formula: 1003-32-3, the main research area is macrocyclic urea preparation selective Chk1 inhibitor; structure macrocyclic urea selectivity Chk1 inhibitor pharmacokinetics; doxorubicin macrocyclic urea combination antitumor activity; kinase selectivity inhibition macrocyclic urea; amine protection key step preparation macrocyclic urea; trimethylsilylethoxycarbonyl group protection amine key step preparation macrocyclic urea.

Macrocyclic ureas such as I [R = H, H2N, MeNH, Me2N, (HOCH2CH2)2N, HOCH2CH2NH, 5-thiazolylmethylamino, 4-pyridinecarbonylamino, 2-chloro-4-pyridinecarbonylamino, (S)-MeCH(NH2)CONH, 2-(4-morpholinyl)ethoxycarbonylamino, 2-oxo-3-oxazolidinyl, HO, HOCH2CH2O, HO(CH2)3O, MeO(CH2)3, 2-(4-morpholinyl)ethoxy, 3-(4-morpholinyl)propoxy, 4-(1-piperidinyl)-1-piperidinecarbonyloxy, (HO)2P(:O); X = CH2CH2, CH:CH] are prepared as selective Chk1 kinase inhibitors and as agents for the sensitization of tumor cells to doxorubicin for potential use as anticancer agents. The structure-activity relationship for Chk1 inhibition of substituted 14-membered urea macrocycles is determined, leading to the identification of sixteen compounds which are effective inhibitors of Chk1. The active urea macrocycles significantly sensitize tumor cells to the DNA-damaging antitumor agent doxorubicin in a cell-based assay and efficiently abrogate the doxorubicin-induced G2/M and camptothecin-induced S checkpoints. The inhibition of a panel of 120 kinases by I (R = 5-thiazolemethylamino; X = CH2CH2; II) is determined; II inhibits Chk1 at 100-fold lower concentrations than any of the other kinases in the panel. Pharmacokinetic studies of I (R = H; X = CH2CH2, CH2CH2CH2) suggest that 14-membered macrocycles such as I (R = H; X = CH2CH2) may possess better pharmacokinetic properties than their 15-membered counterparts such as I (R = H; X = CH2CH2CH2). An improved method for the preparation of amine-containing urea macrocycles I [R = H2N; X = CH:CH, CH2CH2] is determined; protection of the free amino group of a bisallyl diaryl urea intermediate with the trimethylsilylethoxycarbonyl group allows ring-closing macrocyclocondensation in the presence of the Hoveyda-Grubbs catalyst without the formation of inseparable and highly colored byproducts.

Bioorganic & Medicinal Chemistry Letterspublished new progress about Antitumor agents. 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, HPLC of Formula: 1003-32-3.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Dong, Jiaxing’s team published research in Chemistry – A European Journal in 2012 | 20582-55-2

Chemistry – A European Journalpublished new progress about Azoles Role: PRP (Properties), RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 20582-55-2 belongs to class thiazole, and the molecular formula is C7H9NO2S, HPLC of Formula: 20582-55-2.

Dong, Jiaxing; Huang, Yumin; Qin, Xurong; Cheng, Yangyang; Hao, Jing; Wan, Danyang; Li, Wei; Liu, Xingyan; You, Jingsong published the artcile< Palladium(II)-Catalyzed Oxidative C-H/C-H Cross-Coupling between Two Structurally Similar Azoles>, HPLC of Formula: 20582-55-2, the main research area is azole palladium copper cocatalyst oxidative cross coupling; double carbon hydrogen activation azole cross coupling.

A widely functional-group tolerant, selective and rapid oxidative cross-coupling between two structurally similar azoles has been carried out by using a palladium/copper co-catalytic twofold C-H activation method.

Chemistry – A European Journalpublished new progress about Azoles Role: PRP (Properties), RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 20582-55-2 belongs to class thiazole, and the molecular formula is C7H9NO2S, HPLC of Formula: 20582-55-2.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Isbrandt, Eric S’s team published research in Journal of the American Chemical Society in 2021-09-15 | 1003-32-3

Journal of the American Chemical Societypublished new progress about Aldehydes Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Recommanded Product: Thiazole-5-carboxyaldehyde.

Isbrandt, Eric S.; Nasim, Amrah; Zhao, Karen; Newman, Stephen G. published the artcile< Catalytic Aldehyde and Alcohol Arylation Reactions Facilitated by a 1,5-Diaza-3,7-diphosphacyclooctane Ligand>, Recommanded Product: Thiazole-5-carboxyaldehyde, the main research area is aryl iodide aldehyde nickel diazadiphosphacyclooctane catalyst reductive Heck arylation; primary alc aryliodide nickel diazadiphosphacyclooctane catalyst reductive Heck arylation; secondary alc preparation.

A catalytic method to access secondary alcs. by the coupling of aryl iodides was reported. Either aldehydes or alcs. can be used as reaction partners, making the transformation reductive or redox-neutral, resp. The reaction was mediated by a Ni catalyst and a 1,5-diaza-3,7-diphosphacyclooctane. This P2N2 ligand, which was previously been unrecognized in cross-coupling and related reactions, was found to avoid deleterious aryl halide reduction pathways that dominate with more traditional phosphines and NHCs. An interrupted carbonyl-Heck type mechanism was proposed to be operative, with a key 1,2-insertion step forging the new C-C bond and forming a nickel alkoxide that may be turned over by an alc. reductant. The same catalyst was also found to enable synthesis of ketone products from either aldehydes or alcs., demonstrating control over the oxidation state of both the starting materials and products.

Journal of the American Chemical Societypublished new progress about Aldehydes Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Recommanded Product: Thiazole-5-carboxyaldehyde.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Yin, Liuyan’s team published research in Tetrahedron Letters in 2016-12-28 | 1003-32-3

Tetrahedron Letterspublished new progress about Aryl aldehydes Role: RCT (Reactant), RACT (Reactant or Reagent). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Application of C4H3NOS.

Yin, Liuyan; Wang, Lanzhi published the artcile< Chemo-/regio-selective synthesis of 2-aryl-3-acetyl-2,4-dihydro-1H-5H-1,5-benzodiazepines using Lewis acid, CeCl3·7H2O>, Application of C4H3NOS, the main research area is dihydrobenzodiazepine aryl acetyl preparation chemoselective regioselective; phenylenediamine aryl aldehyde butynone condensation Lewis acid catalyst.

A unique and efficient method has been developed for the one-pot synthesis of 2-aryl-3-acetyl-2,4-dihydro-1H-5H-1,5-benzodiazepines I (Ar = 2-thiazolyl, 2-thienyl, 4-ClC6H4, etc.) in good yields using o-phenylenediamine, aromatic aldehyde and 3-butyn-2-one in the presence of a catalytic amount of CeCl3·7H2O in ethanol at ambient temperature An exclusive chemo-/regio-selective formation of substituted isomers of 2-aryl-3-acetyl-2,4-dihydro-1H-5H-1,5-benzodiazepines II (Ar = 2-thiazolyl, 2-thienyl, 4-ClC6H4, etc.; R = CH3, F, Cl, Br) was achieved from the different reaction process, by exploiting the strategy based on the variation of electrophilicity of the two electrophilic centers of aromatic aldehyde, 3-butyn-2-one and nucleophilic profiles of substituted o-phenylenediamines. This process offers an easy and efficient synthesis of 2-aryl-3-acetyl-2,4-dihydro-1H-5H-1,5-benzodiazepines in high yields.

Tetrahedron Letterspublished new progress about Aryl aldehydes Role: RCT (Reactant), RACT (Reactant or Reagent). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Application of C4H3NOS.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

da Silva, Monize M’s team published research in Inorganic Chemistry in 2021-09-20 | 96-53-7

Inorganic Chemistrypublished new progress about Antitumor agents. 96-53-7 belongs to class thiazole, and the molecular formula is C3H5NS2, Application In Synthesis of 96-53-7.

da Silva, Monize M.; Ribeiro, Gabriel H.; de Camargo, Mariana S.; Ferreira, Antonio G.; Ribeiro, Leandro; Barbosa, Marilia I. F.; Deflon, Victor M.; Castelli, Silvia; Desideri, Alessandro; Correa, Rodrigo S.; Ribeiro, Arthur B.; Nicolella, Heloiza D.; Ozelin, Saulo D.; Tavares, Denise C.; Batista, Alzir A. published the artcile< Ruthenium(II) Diphosphine Complexes with Mercapto Ligands That Inhibit Topoisomerase IB and Suppress Tumor Growth In Vivo>, Application In Synthesis of 96-53-7, the main research area is melanoma antitumor lung breast cancer hTopIB docking ruthenium complexes.

Ruthenium(II) complexes (Ru1-Ru5), with the general formula [Ru(N-S)(dppe)2]PF6, bearing two 1,2-bis(diphenylphosphino)ethane (dppe) ligands and a series of mercapto ligands (N-S), have been developed. The combination of these ligands in the complexes endowed hydrophobic species with high cytotoxic activity against five cancer cell lines. For the A549 (lung) and MDA-MB-231 (breast) cancer cell lines, the IC50 values of the complexes were 288- to 14-fold lower when compared to cisplatin. Furthermore, the complexes were selective for the A549 and MDA-MB-231 cancer cell lines compared to the MRC-5 nontumor cell line. The multitarget character of the complexes was investigated by using calf thymus DNA (CT DNA), human serum albumin, and human topoisomerase IB (hTopIB). The complexes potently inhibited hTopIB. In particular, complex [Ru(dmp)(dppe)2]PF6 (Ru3) (I), bearing the 4,6-diamino-2-mercaptopyrimidine (dmp) ligand, effectively inhibited hTopIB by acting on both the cleavage and religation steps of the catalytic cycle of this enzyme. Mol. docking showed that the Ru1-Ru5 complexes have binding affinity by active sites on the hTopI and hTopI-DNA, mainly via π-alkyl and alkyl hydrophobic interactions, as well as through hydrogen bonds. Complex Ru3 displayed significant antitumor activity against murine melanoma in mouse xenograph models, but this complex did not damage DNA, as revealed by Ames and micronucleus tests.

Inorganic Chemistrypublished new progress about Antitumor agents. 96-53-7 belongs to class thiazole, and the molecular formula is C3H5NS2, Application In Synthesis of 96-53-7.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Wang, Mu-Xuan’s team published research in PLoS One in 2022 | 96-53-7

PLoS Onepublished new progress about Amines Role: RCT (Reactant), RACT (Reactant or Reagent). 96-53-7 belongs to class thiazole, and the molecular formula is C3H5NS2, SDS of cas: 96-53-7.

Wang, Mu-Xuan; Qin, Hong-Wei; Liu, Chao; Lv, Shen-Ming; Chen, Jia-Shu; Wang, Chun-Gu; Chen, Ying-Ying; Wang, Jia-Wei; Sun, Jin-Yue; Liao, Zhi-Xin published the artcile< Synthesis and biological evaluation of thiazolidine-2-thione derivatives as novel xanthine oxidase inhibitors>, SDS of cas: 96-53-7, the main research area is thiazolidine thione preparation xanthine oxidase inhibitor SAR mol modeling.

In this study, a series of novel thiazolidine-2-thione derivatives I (R1 = Et, Pr, Ph, benzyl) and II (R2 = Et, 3-pyridyl, cyclohexyl, etc.) were synthesized as XO inhibitors, and the XO inhibitory potencies of obtained compounds I and II was evaluated by in vitro enzyme catalysis. The result shown that compound II [R2 = (4-fluorobenzene)sulfonyl] behaved the strongest XO inhibitory activity with an IC50 value of 3.56μmol/L, which was approx. 2.5-fold more potent than allopurinol. The structure-activity relationship revealed that the phenyl-sulfonamide group was indispensable for thiazolidine-2-thione derivatives II [R2 = (4-fluorobenzene)sulfonyl] to produce XO inhibitory activity. The enzyme inhibition kinetics analyses confirmed that compound II [R2 = (4-fluorobenzene)sulfonyl] exerted a mixed-type XO inhibition. Addnl., the mol. docking results suggested that the 4-fluorophenyl-sulfonyl moiety could interact with Gly260 and Ile264 in the innermost part of the active pocket through 2 hydrogen bonds, while the thiazolidinethione moiety could form two hydrogen bonds with Glu263 and Ser347 in hydrophobic pockets. In summary, the results described above suggested that compound II [R2 = (4-fluorobenzene)sulfonyl] could be a valuable lead compound for the treatment of hyperuricemia as a novel XO inhibitor.

PLoS Onepublished new progress about Amines Role: RCT (Reactant), RACT (Reactant or Reagent). 96-53-7 belongs to class thiazole, and the molecular formula is C3H5NS2, SDS of cas: 96-53-7.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Hansen, Ida K O’s team published research in International Journal of Molecular Sciences in 2020 | 2591-17-5

International Journal of Molecular Sciencespublished new progress about Anti-inflammatory agents. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Name: (S)-2-(6-Hydroxybenzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid.

Hansen, Ida K. O.; Loevdahl, Tomas; Simonovic, Danijela; Hansen, Kine O.; Andersen, Aaron J. C.; Devold, Hege; Richard, C. Eline S. M.; Andersen, Jeanette H.; Strom, Morten B.; Haug, Tor published the artcile< Antimicrobial activity of small synthetic peptides based on the marine peptide turgencin a: prediction of antimicrobial peptide sequences in a natural peptide and strategy for optimization of potency>, Name: (S)-2-(6-Hydroxybenzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid, the main research area is turgencin antimicrobial peptide Escherichia Staphylococcus; Arctic; Synoicum turgens; antimicrobial; ascidian; peptide; synthetic.

Turgencin A, a potent antimicrobial peptide isolated from the Arctic sea squirt Synoicum turgens, consists of 36 amino acid residues and three disulfide bridges, making it challenging to synthesize. The aim of the present study was to develop a truncated peptide with an antimicrobial drug lead potential based on turgencin A. The experiments consisted of: (1) sequence anal. and prediction of antimicrobial potential of truncated 10-mer sequences; (2) synthesis and antimicrobial screening of a lead peptide devoid of the cysteine residues; (3) optimization of in vitro antimicrobial activity of the lead peptide using an amino acid replacement strategy; and (4) screening the synthesized peptides for cytotoxic activities. In silico anal. of turgencin A using various prediction software indicated an internal, cationic 10-mer sequence to be putatively antimicrobial. The synthesized truncated lead peptide displayed weak antimicrobial activity. However, by following a systematic amino acid replacement strategy, a modified peptide was developed that retained the potency of the original peptide. The optimized peptide StAMP-9 displayed bactericidal activity, with minimal inhibitory concentrations of 7.8 μg/mL against Staphylococcus aureus and 3.9 μg/mL against Escherichia coli, and no cytotoxic effects against mammalian cells. Preliminary experiments indicate the bacterial membranes as immediate and primary targets.

International Journal of Molecular Sciencespublished new progress about Anti-inflammatory agents. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Name: (S)-2-(6-Hydroxybenzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Jaffett, Victor A’s team published research in Organic & Biomolecular Chemistry in 2019 | 1003-32-3

Organic & Biomolecular Chemistrypublished new progress about Aldehydes Role: RCT (Reactant), RACT (Reactant or Reagent). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Safety of Thiazole-5-carboxyaldehyde.

Jaffett, Victor A.; Nerurkar, Alok; Cao, Xufeng; Guzei, Ilia A.; Golden, Jennifer E. published the artcile< Telescoped synthesis of C3-functionalized (E)-arylamidines using Ugi-Mumm and regiospecific quinazolinone rearrangements>, Safety of Thiazole-5-carboxyaldehyde, the main research area is arylamidine stereoselective preparation; azidobenzoic acid isocyanide aldehyde bismethylaminoethane Ugi Mumm regiospecific rearrangement.

An efficient four-step, six-transformation protocol was developed to afford bioactive N-alkyl- or N-arylamide (E)-arylamidines I (R1 = Cy, 4-OMeC6H4, i-Pr, etc.; R2 = i-Pr, i-Bu, H, etc.; R3 = H, 5-CH3, 5-F, etc.) featuring strategic amidine C3 modifications which were inaccessible or low yielding by previous methods. This synthetic approach, exemplified with 24 amidines and requiring only a single purification, highlights a multicomponent Ugi-Mumm rearrangement to afford highly diversified quinazolinones which undergo regiospecific rearrangement to afford new amidines. The method extensively broadens the structural scope of this new class of trisubstituted amidines and demonstrates the tolerance of regional C3 amidine steric bulk, visualized with X-ray crystallog. anal.

Organic & Biomolecular Chemistrypublished new progress about Aldehydes Role: RCT (Reactant), RACT (Reactant or Reagent). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Safety of Thiazole-5-carboxyaldehyde.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica