Simple exploration of 111-18-2

Here is a brief introduction to this compound(111-18-2)COA of Formula: C10H24N2, if you want to know about other compounds related to this compound(111-18-2), you can read my other articles.

COA of Formula: C10H24N2. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: N1,N1,N6,N6-Tetramethylhexane-1,6-diamine, is researched, Molecular C10H24N2, CAS is 111-18-2, about Synthesis and antifungal activities of hydrophilic cationic polymers against Rhizoctonia solani. Author is Zhong, Weiqiang; Chang, Yaoyao; Lin, Yaling; Zhang, Anqiang.

A series of linear hydrophilic cationic polymers with different charge d. and mol. weights were synthesized by one-step polymerization process. The effect of the hydrophobicity and mol. weights on the antifungal activity against Rhizoctonia solani (R. solani) and Fusarium oxysporum f. sp. cubense race 4 (Foc4) was assessed. The biotoxicity of the cationic polymers were evaluated based on their median lethal concentration (LC50) for zebrafish and silkworm and median LD (LD50) for Kunming mice. The results indicated that the balance between antifungal activity and biotoxicity could be well tuned by controlling the hydrophobic-hydrophilic balance. The min. inhibitory concentration (MIC) of PEPB10 and PEPB25 against R. solani were 160μg/mL and 80μg/mL, resp. And the LD50 for Kunming mice of PEPB10 and PEPB25 were more than 5000 mg/kg, which mean that PEPB10 and PEPB25 with high hydrophilicity show low toxicity and better selectivity for R. solani. The cationic polymers can kill the R. solani by damaging their membranes and exchanging the Ca2+ or/and Mg2+ cations of their membranes or cell wall. These results help to understand the antifungal mechanism of low-toxic polymeric quaternary ammonium salts and highlight their potential application as highly selective fungicidal agents for controlling plant diseases.

Here is a brief introduction to this compound(111-18-2)COA of Formula: C10H24N2, if you want to know about other compounds related to this compound(111-18-2), you can read my other articles.

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Continuously updated synthesis method about 111-18-2

Here is a brief introduction to this compound(111-18-2)Synthetic Route of C10H24N2, if you want to know about other compounds related to this compound(111-18-2), you can read my other articles.

Synthetic Route of C10H24N2. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: N1,N1,N6,N6-Tetramethylhexane-1,6-diamine, is researched, Molecular C10H24N2, CAS is 111-18-2, about Novel multi-channel anion exchange membrane based on poly ionic liquid-impregnated cationic metal-organic frameworks. Author is Li, Kai; Chen, Jia; Guan, Mingming; Tang, Shaokun.

The “”trade-off”” effect between hydroxide conductivity and dimensional stability is challenging issue for anion exchange membrane fuel cells (AEMFCs). In this study, the framework of UiO-66-NH2 is for the first time applied to anion exchange membranes (AEMs). The robust pore walls of UiO-66-NH2 with mech. and structural durabilities protect the membrane from the excessive swelling effects (a swelling ratio of 7%). In addition, the framework of UiO-66-NH2 is directly modified into (UiO-66-NH2)+Cl- as hydroxide conduction channels by anion stripping for the first time. A well-organized ion nanochannels is constructed by the in-situ self-assembly of N,N,N’,N’-tetramethyl-1,6-hexanediamine (TMHDA) and allyl bromide within the highly ordered pores of (UiO-66-NH2)+Cl-. The obtained QA@(UiO-66-NH2)+Cl- then incorporated into pristine membrane (QAPPO) to fabricate the novel multi-channel AEMs. The hydroxide conductivity of QA@(UiO-66-NH2)+Cl-/PPO is up to 123 mS·cm-1 at 80°, which is greatly improved compared to QAPPO pristine membrane.

Here is a brief introduction to this compound(111-18-2)Synthetic Route of C10H24N2, if you want to know about other compounds related to this compound(111-18-2), you can read my other articles.

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Decrypt The Mystery Of 111-18-2

Here is a brief introduction to this compound(111-18-2)Product Details of 111-18-2, if you want to know about other compounds related to this compound(111-18-2), you can read my other articles.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Synergistically integrated phosphonated poly(pentafluorostyrene) for fuel cells》. Authors are Atanasov, Vladimir; Lee, Albert S.; Park, Eun Joo; Maurya, Sandip; Baca, Ehren D.; Fujimoto, Cy; Hibbs, Michael; Matanovic, Ivana; Kerres, Jochen; Kim, Yu Seung.The article about the compound:N1,N1,N6,N6-Tetramethylhexane-1,6-diaminecas:111-18-2,SMILESS:CN(C)CCCCCCN(C)C).Product Details of 111-18-2. Through the article, more information about this compound (cas:111-18-2) is conveyed.

Modern electrochem. energy conversion devices require more advanced proton conductors for their broad applications. Phosphonated polymers have been proposed as anhydrous proton conductors for fuel cells. However, the anhydride formation of phosphonic acid functional groups lowers proton conductivity and this prevents the use of phosphonated polymers in fuel cell applications. Here, we report a poly(2,3,5,6-tetrafluorostyrene-4-phosphonic acid) that does not undergo anhydride formation and thus maintains protonic conductivity above 200°C. We use the phosphonated polymer in fuel cell electrodes with an ion-pair coordinated membrane in a membrane electrode assembly. This synergistically integrated fuel cell reached peak power densities of 1,130 mW cm-2 at 160°C and 1,740 mW cm-2 at 240°C under H2/O2 conditions, substantially outperforming polybenzimidazole- and metal phosphate-based fuel cells. Our result indicates a pathway towards using phosphonated polymers in high-performance fuel cells under hot and dry operating conditions.

Here is a brief introduction to this compound(111-18-2)Product Details of 111-18-2, if you want to know about other compounds related to this compound(111-18-2), you can read my other articles.

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Some scientific research about 111-18-2

If you want to learn more about this compound(N1,N1,N6,N6-Tetramethylhexane-1,6-diamine)Application of 111-18-2, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(111-18-2).

Application of 111-18-2. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: N1,N1,N6,N6-Tetramethylhexane-1,6-diamine, is researched, Molecular C10H24N2, CAS is 111-18-2, about Novel multi-channel anion exchange membrane based on poly ionic liquid-impregnated cationic metal-organic frameworks.

The “”trade-off”” effect between hydroxide conductivity and dimensional stability is challenging issue for anion exchange membrane fuel cells (AEMFCs). In this study, the framework of UiO-66-NH2 is for the first time applied to anion exchange membranes (AEMs). The robust pore walls of UiO-66-NH2 with mech. and structural durabilities protect the membrane from the excessive swelling effects (a swelling ratio of 7%). In addition, the framework of UiO-66-NH2 is directly modified into (UiO-66-NH2)+Cl- as hydroxide conduction channels by anion stripping for the first time. A well-organized ion nanochannels is constructed by the in-situ self-assembly of N,N,N’,N’-tetramethyl-1,6-hexanediamine (TMHDA) and allyl bromide within the highly ordered pores of (UiO-66-NH2)+Cl-. The obtained QA@(UiO-66-NH2)+Cl- then incorporated into pristine membrane (QAPPO) to fabricate the novel multi-channel AEMs. The hydroxide conductivity of QA@(UiO-66-NH2)+Cl-/PPO is up to 123 mS·cm-1 at 80°, which is greatly improved compared to QAPPO pristine membrane.

If you want to learn more about this compound(N1,N1,N6,N6-Tetramethylhexane-1,6-diamine)Application of 111-18-2, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(111-18-2).

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

New learning discoveries about 111-18-2

If you want to learn more about this compound(N1,N1,N6,N6-Tetramethylhexane-1,6-diamine)Application In Synthesis of N1,N1,N6,N6-Tetramethylhexane-1,6-diamine, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(111-18-2).

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: N1,N1,N6,N6-Tetramethylhexane-1,6-diamine( cas:111-18-2 ) is researched.Application In Synthesis of N1,N1,N6,N6-Tetramethylhexane-1,6-diamine.Ma, Lingling; Qaisrani, Naeem Akhtar; Hussain, Manzoor; Li, Lv; Jia, Yabin; Ma, Siyu; Zhou, Ruiting; Bai, Lei; He, Gaohong; Zhang, Fengxiang published the article 《Cyclodextrin modified, multication cross-linked high performance anion exchange membranes for fuel cell application》 about this compound( cas:111-18-2 ) in Journal of Membrane Science. Keywords: cyclodextrin modified salt anion exchange fuel cell membrane. Let’s learn more about this compound (cas:111-18-2).

The anion exchange membranes (AEMs) with high hydroxide ion conductivity and stability are in an urgent need for alk. membrane fuel cell applications. High ionic exchange capacity (IEC) is necessary to improve conductivity but detrimental to stability. In this work, a series of novel AEMs modified with bulky rigid β-cyclodextrin (CD) and long flexible multiple quaternary ammonium (MQ) are designed and prepared The resulting AEM with a relatively low IEC of 1.50 mmol g-1 shows a good hydroxide ion conductivity of 112.4 mS cm-1 at 80 oC, whereas its counterpart without CD modification exhibits 83.0 mS cm-1 despite a similar IEC (1.60 mmol g-1); this is because the large CD units can impart high free volume to the membrane, reducing the ion transport resistance, and meanwhile, the hydrophilicity of CD′s external surface may promote formation of ion transport channels across the long flexible MQ cross-links. The CD modified AEM also imparts the membrane a better alkali- and swelling resistance as well as a higher tensile strength, without sacrificing its hydroxide ion conduction properties, than the un-modified membrane. The H2-O2 fuel cell yields a high peak power d. of 288 mW cm-2 at 60 oC. Our work implies that the CD enabled free volume strategy is effective to balance conductivity and stability, which may pave the way to fabrication of AEMs with further improved performance.

If you want to learn more about this compound(N1,N1,N6,N6-Tetramethylhexane-1,6-diamine)Application In Synthesis of N1,N1,N6,N6-Tetramethylhexane-1,6-diamine, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(111-18-2).

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

You Should Know Something about 111-18-2

If you want to learn more about this compound(N1,N1,N6,N6-Tetramethylhexane-1,6-diamine)Recommanded Product: N1,N1,N6,N6-Tetramethylhexane-1,6-diamine, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(111-18-2).

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Therapeutic targeting of transcriptional elongation in diffuse intrinsic pontine glioma》. Authors are Katagi, Hiroaki; Takata, Nozomu; Aoi, Yuki; Zhang, Yongzhan; Rendleman, Emily J.; Blyth, Gavin T.; Eckerdt, Frank D.; Tomita, Yusuke; Sasaki, Takahiro; Saratsis, Amanda M.; Kondo, Akihide; Goldman, Stewart; Becher, Oren J.; Smith, Edwin; Zou, Lihua; Shilatifard, Ali; Hashizume, Rintaro.The article about the compound:N1,N1,N6,N6-Tetramethylhexane-1,6-diaminecas:111-18-2,SMILESS:CN(C)CCCCCCN(C)C).Recommanded Product: N1,N1,N6,N6-Tetramethylhexane-1,6-diamine. Through the article, more information about this compound (cas:111-18-2) is conveyed.

Diffuse intrinsic pontine glioma (DIPG) is associated with transcriptional dysregulation driven by H3K27 mutation. The super elongation complex (SEC) is required for transcriptional elongation through release of RNA polymerase II (Pol II). Inhibition of transcription elongation by SEC disruption can be an effective therapeutic strategy of H3K27M-mutant DIPG. Here, we tested the effect of pharmacol. disruption of the SEC in H3K27M-mutant DIPG to advance understanding of the mol. mechanism and as a new therapeutic strategy for DIPG. Short hairpin RNAs (shRNAs) were used to suppress the expression of AF4/FMR2 4 (AFF4), a central SEC component, in H3K27M-mutant DIPG cells. A peptidomimetic lead compound KL-1 was used to disrupt a functional component of SEC. Cell viability assay, colony formation assay, and apoptosis assay were utilized to analyze the effects of KL-1 treatment. RNA- and ChIP-sequencing were used to determine the effects of KL-1 on gene expression and chromatin occupancy. We treated mice bearing H3K27M-mutant DIPG patient-derived xenografts (PDXs) with KL-1. Intracranial tumor growth was monitored by bioluminescence image and therapeutic response was evaluated by animal survival. Depletion of AFF4 significantly reduced the cell growth of H3K27M-mutant DIPG. KL-1 increased genome-wide Pol II occupancy and suppressed transcription involving multiple cellular processes that promote cell proliferation and differentiation of DIPG. KL-1 treatment suppressed DIPG cell growth, increased apoptosis, and prolonged animal survival with H3K27M-mutant DIPG PDXs. SEC disruption by KL-1 increased therapeutic benefit in vitro and in vivo, supporting a potential therapeutic activity of KL-1 in H3K27M-mutant DIPG.

If you want to learn more about this compound(N1,N1,N6,N6-Tetramethylhexane-1,6-diamine)Recommanded Product: N1,N1,N6,N6-Tetramethylhexane-1,6-diamine, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(111-18-2).

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Top Picks: new discover of 111-18-2

If you want to learn more about this compound(N1,N1,N6,N6-Tetramethylhexane-1,6-diamine)Application In Synthesis of N1,N1,N6,N6-Tetramethylhexane-1,6-diamine, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(111-18-2).

Application In Synthesis of N1,N1,N6,N6-Tetramethylhexane-1,6-diamine. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: N1,N1,N6,N6-Tetramethylhexane-1,6-diamine, is researched, Molecular C10H24N2, CAS is 111-18-2, about The importance of water transport in high conductivity and high-power alkaline fuel cells. Author is Mandal, Mrinmay; Huang, Garrett; Hassan, Noor Ul; Peng, Xiong; Gu, Taoli; Brooks-Starks, Ahmon H.; Bahar, Bamdad; Mustain, William E.; Kohl, Paul A..

High ionic conductivity membranes can be used to minimize ohmic losses in electrochem. devices such as fuel cells, flow batteries, and electrolyzers. Very high hydroxide conductivity was achieved through the synthesis of a norbornene-based tetrablock copolymer with an ion-exchange capacity of 3.88 meq/g. The membranes were cast with a thin polymer reinforcement layer and lightly cross-linked with N,N,N’,N’-tetramethyl-1,6-hexanediamine. The norbornene polymer had a hydroxide conductivity of 212 mS/cm at 80°. Light crosslinking helped to control the H2O uptake and provide mech. stability while balancing the bound (i.e. waters of hydration) vs. free H2O in the films. The films showed excellent chem. stability with <1.5% conductivity loss after soaking in 1 M NaOH for 1000 h at 80°. The aged films were analyzed by FTIR before and after aging to confirm their chem. stability. A H2/O2 alk. polymer electrolyte fuel cell was fabricated and was able to achieve a peak power d. of 3.5 W/cm2 with a maximum c.d. of 9.7 A/cm2 at 0.15 V at 80°. The exceptionally high current and power densities were achieved by balancing and optimizing H2O removal and transport from the H neg. electrode to the O pos. electrode. High H2O transport and thinness are critical aspects of the membrane in extending the power and c.d. of the cells to new record values. If you want to learn more about this compound(N1,N1,N6,N6-Tetramethylhexane-1,6-diamine)Application In Synthesis of N1,N1,N6,N6-Tetramethylhexane-1,6-diamine, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(111-18-2).

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Fun Route: New Discovery of 111-18-2

Here is a brief introduction to this compound(111-18-2)Reference of N1,N1,N6,N6-Tetramethylhexane-1,6-diamine, if you want to know about other compounds related to this compound(111-18-2), you can read my other articles.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: N1,N1,N6,N6-Tetramethylhexane-1,6-diamine(SMILESS: CN(C)CCCCCCN(C)C,cas:111-18-2) is researched.Name: cis-4-Aminocyclohexane carboxylic acid. The article 《Bolaform surfactant-directed synthesis of TS-1 zeolite nanosheets for catalytic epoxidation of bulky cyclic olefins》 in relation to this compound, is published in Catalysis Science & Technology. Let’s take a look at the latest research on this compound (cas:111-18-2).

Hierarchical titanium silicalite-1 nanosheets (HTS-1) were hydrothermally synthesized by using a bolaform surfactant [C6H13-N+(CH3)2-C6H12-N+(CH3)2-(CH2)12-O-(p-C6H4)2-O-(CH2)12-N+(CH3)2-C6H12-N+(CH3)2-C6H13] [OH-]4 as the structure-directing agent. The resultant zeolite particles possessed not only a superior interlayer stability but also a unique house-of-cards-like structure by the 90° rotational boundary connectivity of TS-1 nanosheets directed by the π-π stacking interaction from the biphenyl group in the bolaform surfactant as well as content controllability of coordinated Ti species in the zeolite framework. The obtained HTS-1 samples were used as catalysts for the epoxidation of bulky cyclic olefins (cyclohexene and cyclooctene) and exhibited improved performance and superior recyclability in comparison with the conventional solely microporous TS-1 (CTS-1) catalyst as well as the mesoporous TS-1 (MTS-1) catalyst directed by the com. organosilane surfactant TPOAC, due to their exoteric interlayered mesopores and enlarged external surface areas providing more accessible Ti active sites for the bulky mol. reactants. Moreover, the optimized Ti content for the HTS-1 catalysts was proposed by fully taking into account the conversion and turnover frequency (TOF) values. In addition, the recyclability and stability of the HTS-1 catalysts in the epoxidation reaction and the post fluoride treatment to enhance their hydrophobicity as well as epoxidation activity were further discussed.

Here is a brief introduction to this compound(111-18-2)Reference of N1,N1,N6,N6-Tetramethylhexane-1,6-diamine, if you want to know about other compounds related to this compound(111-18-2), you can read my other articles.

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Continuously updated synthesis method about 111-18-2

Here is a brief introduction to this compound(111-18-2)Quality Control of N1,N1,N6,N6-Tetramethylhexane-1,6-diamine, if you want to know about other compounds related to this compound(111-18-2), you can read my other articles.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Chlorine-Resistant Epoxide-Based Membranes For Sustainable Water Desalination, published in 2021-09-14, which mentions a compound: 111-18-2, Name is N1,N1,N6,N6-Tetramethylhexane-1,6-diamine, Molecular C10H24N2, Quality Control of N1,N1,N6,N6-Tetramethylhexane-1,6-diamine.

The hypersensitivity of state-of-the-art polyamide-based membranes to chlorine is a major source of premature membrane failure and module replacement in water desalination plants. This problem can currently only be solved by implementing pre and post-treatment processes involving addnl. chem. use and energy input, thus increasing environmental, capital, and operational costs. Herein, we report a chlorine, acid and base resistant desalination membrane comprising a cross-linked epoxide-based polymer-selective layer with permanent pos. charges. These novel membranes exhibit high mono- and divalent salt rejection (81% NaCl, 87% CaCl2, 89% MgCl2) and a water permeance of 2 L m-2 h-1 bar-1, i.e., desalination performance comparable to that of com. available nanofiltration membranes. Unlike conventional polyamide-based membranes, this new generation of epoxide-based membranes takes advantage of the intrinsic chem. stability of ether bonds while achieving the polymer and charge needed for desalination. In doing so, the stability of these membranes opens new horizons for sustainable water purification and many other separations in harsh media in a variety of applications (e.g., solvent recovery, gas separations, redox flow batteries).

Here is a brief introduction to this compound(111-18-2)Quality Control of N1,N1,N6,N6-Tetramethylhexane-1,6-diamine, if you want to know about other compounds related to this compound(111-18-2), you can read my other articles.

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Discovery of 111-18-2

Here is a brief introduction to this compound(111-18-2)Formula: C10H24N2, if you want to know about other compounds related to this compound(111-18-2), you can read my other articles.

Formula: C10H24N2. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: N1,N1,N6,N6-Tetramethylhexane-1,6-diamine, is researched, Molecular C10H24N2, CAS is 111-18-2, about Therapeutic targeting of transcriptional elongation in diffuse intrinsic pontine glioma.

Diffuse intrinsic pontine glioma (DIPG) is associated with transcriptional dysregulation driven by H3K27 mutation. The super elongation complex (SEC) is required for transcriptional elongation through release of RNA polymerase II (Pol II). Inhibition of transcription elongation by SEC disruption can be an effective therapeutic strategy of H3K27M-mutant DIPG. Here, we tested the effect of pharmacol. disruption of the SEC in H3K27M-mutant DIPG to advance understanding of the mol. mechanism and as a new therapeutic strategy for DIPG. Short hairpin RNAs (shRNAs) were used to suppress the expression of AF4/FMR2 4 (AFF4), a central SEC component, in H3K27M-mutant DIPG cells. A peptidomimetic lead compound KL-1 was used to disrupt a functional component of SEC. Cell viability assay, colony formation assay, and apoptosis assay were utilized to analyze the effects of KL-1 treatment. RNA- and ChIP-sequencing were used to determine the effects of KL-1 on gene expression and chromatin occupancy. We treated mice bearing H3K27M-mutant DIPG patient-derived xenografts (PDXs) with KL-1. Intracranial tumor growth was monitored by bioluminescence image and therapeutic response was evaluated by animal survival. Depletion of AFF4 significantly reduced the cell growth of H3K27M-mutant DIPG. KL-1 increased genome-wide Pol II occupancy and suppressed transcription involving multiple cellular processes that promote cell proliferation and differentiation of DIPG. KL-1 treatment suppressed DIPG cell growth, increased apoptosis, and prolonged animal survival with H3K27M-mutant DIPG PDXs. SEC disruption by KL-1 increased therapeutic benefit in vitro and in vivo, supporting a potential therapeutic activity of KL-1 in H3K27M-mutant DIPG.

Here is a brief introduction to this compound(111-18-2)Formula: C10H24N2, if you want to know about other compounds related to this compound(111-18-2), you can read my other articles.

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica