Deng, Xiao-Bing’s team published research in Phosphorus, Sulfur and Silicon and the Related Elements in 2011 | 171877-39-7

Phosphorus, Sulfur and Silicon and the Related Elements published new progress about Antibacterial agents. 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, Reference of 171877-39-7.

Deng, Xiao-Bing; Chen, Ning; Wang, Zhi-Xin; Li, Xin-Yao; Hu, Hong-Yan; Xu, Jia-Xi published the artcile< A Convenient Synthesis of Thiazolidin-2-ones from Thiazolidine-2-thiones: Antibiotic Activity and Revisiting the Mechanism>, Reference of 171877-39-7, the main research area is thiazolidinone preparation antifungal antibacterial activity; thiazolidinethione bromoethanol reactant thiazolidinone preparation.

Various substituted thiazolidin-2-ones were synthesized from the corresponding thiazolidine-2-thiones with bromoethanol in ethanol with sodium ethoxide as a base. The optimal reaction conditions and mechanism were reinvestigated in detail. The bioassay indicated that (S)-4-iso-butylthiazolidin-2-one and (S)-4-benzylthiazolidin-2-one show certain inhibitive activities against Candida albicans and Escherichia coli.

Phosphorus, Sulfur and Silicon and the Related Elements published new progress about Antibacterial agents. 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, Reference of 171877-39-7.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Villa, Reymundo’s team published research in Organic Letters in 2012-11-02 | 171877-39-7

Organic Letters published new progress about Absolute configuration. 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, SDS of cas: 171877-39-7.

Villa, Reymundo; Mandel, Alexander L.; Jones, Brian D.; La Clair, James J.; Burkart, Michael D. published the artcile< Structure of FD-895 Revealed through Total Synthesis>, SDS of cas: 171877-39-7, the main research area is FD895 synthesis structure antitumor.

The total synthesis of FD-895 (I) was completed through a strategy that featured the use of a tandem esterification ring-closing metathesis (RCM) process to construct the 12-membered macrolide and a modified Stille coupling to append the side chain. These studies combined with detailed anal. of all four possible C16-C17 stereoisomers were used to confirm the structure of FD-895 and identify an analog with an enhanced subnanomolar bioactivity.

Organic Letters published new progress about Absolute configuration. 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, SDS of cas: 171877-39-7.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Su, H’s team published research in Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry in 2013-06-30 | 171877-39-7

Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry published new progress about Acid chlorides Role: RCT (Reactant), RACT (Reactant or Reagent). 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, Reference of 171877-39-7.

Su, H.; Yang, J.-H.; Lu, C.-F.; Chen, Z.-X.; Yang, G.-C. published the artcile< A study of the alkylation and acylation of N-acylthiazolidinethione>, Reference of 171877-39-7, the main research area is acylthiazolidinethione alkylation acylation.

Studying the alkylation and acylation of N-acylthiazolidinethione, the desired α-alkylated products and C-acylated products are not obtained, but rather the S-alkylated products and O-acylated products were obtained. The possible mechanism proposed shows that the deprotonation agent and electrophilic species are responsible for the stability of enolates. The enolates derived from N-acylthiazolidinethiones are decomposed in the presence of base, but they are comparatively stable in the presence of Lewis acid. When electrophilic reagent is alkyl halide, the enolate decomposition is the dominating pathway, and affords the S-alkylated products; and when electrophilic reagent is acyl chloride, the formation of a highly ordered chelated transition-state is the dominating pathway, and affords the O-acylated products.

Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry published new progress about Acid chlorides Role: RCT (Reactant), RACT (Reactant or Reagent). 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, Reference of 171877-39-7.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Munive, Laura’s team published research in Organic Letters in 2012-07-06 | 171877-39-7

Organic Letters published new progress about Amino amides Role: SPN (Synthetic Preparation), PREP (Preparation). 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, Reference of 171877-39-7.

Munive, Laura; Rivas, Veronica M.; Ortiz, Aurelio; Olivo, Horacio F. published the artcile< Oxazolidine-2-thiones and Thiazolidine-2-thiones as Nucleophiles in Intermolecular Michael Additions>, Reference of 171877-39-7, the main research area is thiazolidinethione crotonylthiazolidinethione stereoselective Michael addition; oxazolidinethione crotonyloxazolidinethione stereoselective Michael addition.

Conjugate addition of thiazolidinethiones and oxazolidinethiones to N-crotonylthiazolidinethiones and -oxazolidinethiones was observed in the presence of excess triethylamine in dichloromethane. The addition takes place by the nitrogen of the heterocycle with high diastereoselectivity. It was observed that the stereoselective addition occurs on the anti-s-cis conformation of the N-enoyl sulfur-containing heterocycle.

Organic Letters published new progress about Amino amides Role: SPN (Synthetic Preparation), PREP (Preparation). 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, Reference of 171877-39-7.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Thakur, Nimisha’s team published research in Chirality in 2019 | 171877-39-7

Chirality published new progress about Enantioselective synthesis. 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, Name: (S)-4-Benzylthiazolidine-2-thione.

Thakur, Nimisha; Patil, Rahul A.; Talebi, Mohsen; Readel, Elizabeth R.; Armstrong, Daniel W. published the artcile< Enantiomeric impurities in chiral catalysts, auxiliaries, and synthons used in enantioselective syntheses. Part 5>, Name: (S)-4-Benzylthiazolidine-2-thione, the main research area is chiral catalyst synthon enantioselective enantiomeric impurity; chiral separation; enantiomeric excess; enantiomeric impurity; enantioselective syntheses.

The enantiomeric excess of chiral starting materials is one of the important factors determining the enantiopurity of products in asym. synthesis. Fifty-one com. available chiral reagents used as building blocks, catalysts, and auxiliaries in various enantioselective syntheses were assayed for their enantiomeric purity. The test results were classified within five impurities level (ie, <0.01%, 0.01%-0.1%, 0.1%-1%, 1%-10%, >10%). Previously from 1998 to 2013, several reports have been published on the enantiomeric composition of more than 300 chiral reagents. This series of papers is necessitated by the fact that new reagents are forthcoming and that the enantiomeric purity of the same reagent can vary from batch to batch and/or from supplier to supplier. This report presents chiral liquid chromatog. (LC) and gas composition(GC) methods to sep. enantiomers of chiral compounds and evaluate their enantiomeric purities. The accurate and efficient LC anal. was done using newly introduced superficially porous particle (SPP 2.7μm) based chiral stationary phases (TeicoShell, VancoShell, LarihcShell-P, and NicoShell).

Chirality published new progress about Enantioselective synthesis. 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, Name: (S)-4-Benzylthiazolidine-2-thione.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Sun, Ping’s team published research in Analyst (Cambridge, United Kingdom) in 2011-02-21 | 171877-39-7

Analyst (Cambridge, United Kingdom) published new progress about Alcohols Role: ANT (Analyte), ANST (Analytical Study) (analytes). 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, Product Details of C10H11NS2.

Sun, Ping; Wang, Chunlei; Padivitage, Nilusha Lasanthi Thilakarathna; Nanayakkara, Yasith S.; Perera, Sirantha; Qiu, Haixiao; Zhang, Ying; Armstrong, Daniel W. published the artcile< Evaluation of aromatic-derivatized cyclofructans 6 and 7 as HPLC chiral selectors>, Product Details of C10H11NS2, the main research area is aromatic derivatized cyclofructan HPLC chiral selector stationary phase.

The two best aromatic-functionalized cyclofructan chiral stationary phases, R-naphthylethyl-carbamate cyclofructan 6 (RN-CF6) and dimethylphenyl-carbamate cyclofructan 7 (DMP-CF7), were synthesized and evaluated by injecting various classes of chiral analytes. They provided enantioselectivity toward a broad range of compounds, including chiral acids, amines, metal complexes, and neutral compounds It is interesting that they exhibited complementary selectivities and the combination of two columns provided enantiomeric separations for 43% of the test analytes. These extensive chromatog. results provided useful information about method development of specific analytes, and also gave some insight as to the enantioseparation mechanism.

Analyst (Cambridge, United Kingdom) published new progress about Alcohols Role: ANT (Analyte), ANST (Analytical Study) (analytes). 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, Product Details of C10H11NS2.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Huang, David S’s team published research in Bioorganic & Medicinal Chemistry Letters in 2018-09-01 | 171877-39-7

Bioorganic & Medicinal Chemistry Letters published new progress about Antitumor agents. 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, Reference of 171877-39-7.

Huang, David S.; Wong, Henry L.; Georg, Gunda I. published the artcile< Synthesis and evaluation of C2 functionalized analogs of the α-tubulin-binding natural product pironetin>, Reference of 171877-39-7, the main research area is pironetin analog preparation anticancer structure activity ovarian cancer; Cytotoxicity; Pironetin; Structure-activity; Synthesis; Tubulin.

Pironetin is an α-tubulin-binding natural product with potent antiproliferative activity against several cancer cell lines that inhibits cell division by forming a covalent adduct with α-tubulin via a Michael addition into the natural product’s α,β-unsaturated lactone. We designed and prepared analogs carrying electron-withdrawing groups at the α-position (C2) of the α,β-unsaturated lactone with the goal to generate potent and selective binding analogs. We prepared derivatives I (R = F, Me, Cl, Br, Ph) containing halogens, a Ph, and a Me group at the C2 position to evaluate the structure-activity relationship at this position. Testing of the analogs in ovarian cancer cell lines demonstrated 100-1000-fold decreased antiproliferative activity.

Bioorganic & Medicinal Chemistry Letters published new progress about Antitumor agents. 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, Reference of 171877-39-7.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Huang, Gaochao’s team published research in Organic Letters in 2017-04-07 | 171877-39-7

Organic Letters published new progress about Diastereoselective synthesis. 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, Synthetic Route of 171877-39-7.

Huang, Gaochao; Shrestha, Ruben; Jia, Kaimin; Geisbrecht, Brian V.; Li, Ping published the artcile< Enantioselective Synthesis of Dilignol Model Compounds and Their Stereodiscrimination Study with a Dye-Decolorizing Peroxidase>, Synthetic Route of 171877-39-7, the main research area is dilignol model compound enantioselective preparation surface plasmon resonance TcDyP.

A four-step enantioselective approach was developed to synthesize anti (1R,2S)-I and (1S,2R)-I containing a β-O-4 linkage in good yields. A significant difference was observed for the apparent binding affinities of four stereospecific lignin model compounds with TcDyP by surface plasmon resonance, which was not translated into a significant difference in enzyme activities. The discrepancy may be attributed to the conformational change involving a loop widely present in DyPs upon H2O2 binding.

Organic Letters published new progress about Diastereoselective synthesis. 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, Synthetic Route of 171877-39-7.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Sanichar, Randy’s team published research in Organic & Biomolecular Chemistry in 2018 | 171877-39-7

Organic & Biomolecular Chemistry published new progress about Alcohols Role: RCT (Reactant), RACT (Reactant or Reagent). 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, HPLC of Formula: 171877-39-7.

Sanichar, Randy; Carroll, Ciaran; Kimmis, Ryan; Reiz, Bela; Vederas, John C. published the artcile< Dess-Martin periodinane oxidative rearrangement for preparation of α-keto thioesters>, HPLC of Formula: 171877-39-7, the main research area is Dess Martin periodinane oxidative rearrangement alpha keto thioester preparation; keto thioester preparation oxidation beta hydroxy thioester.

A Dess-Martin Periodinane (DMP) mediated oxidative rearrangement reaction was uncovered. The reaction proceeds via oxidation of a β-hydroxy thioester to a β-keto thioester, followed by an α-hydroxylation and then further oxidation to form a vicinal thioester tricarbonyl. This product then rearranges, extruding CO2, to form an α-keto product. The mechanism of the rearrangement was elucidated using 13C labeling and anal. of the intermediates as well as the products of the reaction. This efficient process allows for easy preparation of α-keto thioesters which are potential intermediates in the synthesis of pharmaceutically important heterocyclic scaffolds such as quinoxalinones.

Organic & Biomolecular Chemistry published new progress about Alcohols Role: RCT (Reactant), RACT (Reactant or Reagent). 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, HPLC of Formula: 171877-39-7.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Oishi, Shunsuke’s team published research in Angewandte Chemie, International Edition in 2012 | 171877-39-7

Angewandte Chemie, International Edition published new progress about 1,3-Dicarbonyl compounds Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, Quality Control of 171877-39-7.

Oishi, Shunsuke; Saito, Susumu published the artcile< Double Molecular Recognition with Aminoorganoboron Complexes: Selective Alcoholysis of β-Dicarbonyl Derivatives>, Quality Control of 171877-39-7, the main research area is mol recognition aminoorganoboron complex chemoselective regioselective alcoholysis dicarbonyl derivative.

Aminoorganoboron (AOB) complexes recognize alc. and β-dicarbonyl units, and thereby facilitate chemo- and site-selective alcoholysis of the latter. The complex activates both reaction partners. This strategy enables C-C, C-N, and C-O bond cleavage in addition/elimination reactions under near neutral pH conditions and provides a new method for functional group conversions.

Angewandte Chemie, International Edition published new progress about 1,3-Dicarbonyl compounds Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 171877-39-7 belongs to class thiazole, and the molecular formula is C10H11NS2, Quality Control of 171877-39-7.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica