Fan, Di’s team published research in ChemMedChem in 2021-06-17 | 2591-17-5

ChemMedChem published new progress about Antitumor agents. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Electric Literature of 2591-17-5.

Fan, Di; Wang, Ting; Hu, Jinhui; Zhou, Lin; Zhou, Jiahong; Wei, Shaohua published the artcile< Plasmid DNA-Based Bioluminescence-Activated System for Photodynamic Therapy in Cancer Treatment>, Electric Literature of 2591-17-5, the main research area is cervical cancer plasmid DNA bioluminescence photodynamic therapy; hypericin; luciferase; photodynamic therapy; plasmid DNA; singlet oxygen.

The low depth of tissue penetration by therapeutic light sources severely restricts photodynamic therapy (PDT) in treating deep-seated tumors. Using a luciferase/D-luciferin bioluminescence system to artificially create internal light sources in cells instead of external light sources is an effective means of solving the above problems. However, high-efficiency bioluminescence requires a higher concentration of luciferase in the cell, which poses a considerable challenge to the existing system of enzyme loading, delivery, activity and retention of drugs, and dramatically increases the cost of treatment. We loaded the substrate D-luciferin, and the photosensitizer hypericin into a polyethyleneimine (PEI)-modified nano-calcium phosphate (CaP) to solve this problem. Subsequently, the plasmid DNA containing the luciferase gene was loaded onto it using the high-d. pos. charge characteristic of PEI from the nanodrug (denoted DHDC). After the DHDC enters the tumor cell, it collapses and releases the plasmid DNA, which uses the intracellular protein synthesis system to continuously and massively express luciferase. Using endogenous ATP, Mg2+, and O2 in cells, luciferase oxidizes D-luciferin and produces luminescence. The luminescence triggers hypericin excitation to generate ROS and kill cancer cells. This study provides a new strategy for the application of bioluminescence in PDT treatment.

ChemMedChem published new progress about Antitumor agents. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Electric Literature of 2591-17-5.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

de Souza, Daniel Rangel’s team published research in Scientific Reports in 2022-12-31 | 2591-17-5

Scientific Reports published new progress about 2591-17-5. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Application of C11H8N2O3S2.

de Souza, Daniel Rangel; Silva, Jaqueline Rodrigues; Moreira, Ariele; Viviani, Vadim R. published the artcile< Biosensing firefly luciferin synthesis in bacteria reveals a cysteine-dependent quinone detoxification route in Coleoptera>, Application of C11H8N2O3S2, the main research area is .

Abstract: Luciferin biosynthetic origin and alternative biol. functions during the evolution of beetles remain unknown. We have set up a bioluminescent sensing method for luciferin synthesis from cysteine and benzoquinone using E. coli and Pichia pastoris expressing the bright Amydetes vivianii firefly and P. termitilluminans click beetle luciferases. In the presence of D-cysteine and benzoquinone, intense bioluminescence is quickly produced, indicating the expected formation of D-luciferin. Starting with L-cysteine and benzoquinone, the bioluminescence is weaker and delayed, indicating that bacteria produce L-luciferin, and then racemize it to D-luciferin in the presence of endogenous esterases, CoA and luciferase. In bacteria the p-benzoquinone toxicity (IC50 ∼ 25 μM) is considerably reduced in the presence of cysteine, maintaining cell viability at 3.6 mM p-benzoquinone concomitantly with the formation of luciferin. Transcriptional anal. showed the presence of gene products involved with the sclerotization/tanning in the photogenic tissues, suggesting a possible link between these pathways and bioluminescence. The lack of two enzymes involved with the last steps of these pathways, indicate the possible accumulation of toxic quinone intermediates in the lanterns. These results and the abundance of cysteine producing enzymes suggest that luciferin first appeared as a detoxification byproduct of cysteine reaction with accumulated toxic quinone intermediates during the evolution of sclerotization/tanning in Coleoptera.

Scientific Reports published new progress about 2591-17-5. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Application of C11H8N2O3S2.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Lin, Xuexiang’s team published research in Scientific Reports in 2022-12-31 | 2591-17-5

Scientific Reports published new progress about Diagnosis. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Electric Literature of 2591-17-5.

Lin, Xuexiang; Liu, Xiao-Yu; Zhang, Bo; Qin, Ai-Qing; Hui, Kwok-Min; Shi, Kevin; Liu, Yang; Gabriel, Don; Li, X. James published the artcile< A rapid influenza diagnostic test based on detection of viral neuraminidase activity>, Electric Literature of 2591-17-5, the main research area is neuraminidase enzyme assay influenza diagnosis.

Current methods used for diagnosis of acute infection of pathogens rely on detection of nucleic acids, antigens, or certain classes of antibodies such as IgM. Here we report a virus enzyme assay as an alternative to these methods for detection of acute viral infection. In this method, we used a luciferin derivative as the substrate for detection of the enzyme activity of influenza viral neuraminidase as a means for diagnosis of influenza. The resulting com. test, the qFLU Dx Test, uses a different supply chain that does not compete with those for the current tests. The assay reagents were formulated as a master mix that accommodated both the neuraminidase and luciferase reactions, thereby enabling rapid and prolonged production of stable light signal in the presence of influenza virus in the sample. The assay was evaluated using depository throat swab specimens. As expected, the assay exhibited similar detection rates for all influenza types and subtypes except for A(H7N9), which exhibited lower detection rate due to lower viral titer in the specimens. When throat swab specimens were diluted with the sample buffer of the test kit and tested with the qFLU Dx Test. The sensitivity and specificity were 82.41% (95% confidence interval: 79.66-85.84%) and 95.39% (95% confidence interval: 94.32-96.46%), resp., for these diluted specimens in comparison to a real-time polymerase chain reaction assay. The uniqueness of the qFLU Dx Test as an enzymic assay makes it highly complementary with currently available methods.

Scientific Reports published new progress about Diagnosis. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Electric Literature of 2591-17-5.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Ikeda, Yuma’s team published research in Analytical Chemistry (Washington, DC, United States) in 2020-03-17 | 2591-17-5

Analytical Chemistry (Washington, DC, United States) published new progress about Bioluminescence. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Computed Properties of 2591-17-5.

Ikeda, Yuma; Nomoto, Takahiro; Hiruta, Yuki; Nishiyama, Nobuhiro; Citterio, Daniel published the artcile< Ring-Fused Firefly Luciferins: Expanded Palette of Near-Infrared Emitting Bioluminescent Substrates>, Computed Properties of 2591-17-5, the main research area is ring fused firefly luciferin near IR emitting bioluminescence substrate.

Firefly bioluminescence is broadly applied as a noninvasive imaging modality in the biomedical research field. One limitation in firefly bioluminescence imaging is the limited variety of luciferins emitting in the near-IR (NIR) region (650-900 nm), where tissue penetration is high. Herein, we describe a series of structure-inherent NIR emitting firefly luciferin analogs, NIRLucs, designed through a ring fusion strategy. This strategy resulted in pH-independent structure-inherent NIR emission with a native firefly luciferase, which was theor. supported by quantum chem. calculations of the oxidized form of each luciferin. When applied to cells, NIRLucs displayed dose-independent improved NIR emission even at low concentrations where the native D-luciferin substrate does not emit. Addnl., excellent blood retention and brighter photon flux (7-fold overall, 16-fold in the NIR spectral range) than in the case of D-luciferin have been observed with one of the NIRLucs in mice bearing s.c. tumors. We believe that these synthetic luciferins provide a solution to the longstanding limitation in the variety of NIR emitting luciferins and pave the way to the further development of NIR bioluminescence imaging platforms.

Analytical Chemistry (Washington, DC, United States) published new progress about Bioluminescence. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Computed Properties of 2591-17-5.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Yu, Mohan’s team published research in Molecules in 2021 | 2591-17-5

Molecules published new progress about Annihilation radiation. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Application In Synthesis of 2591-17-5.

Yu, Mohan; Liu, Yajun published the artcile< A QM/MM Study on the Initiation Reaction of Firefly Bioluminescence-Enzymatic Oxidation of Luciferin>, Application In Synthesis of 2591-17-5, the main research area is luciferin bioluminescence enzymic oxidation quantum mol mechanic study; QM/MM; firefly bioluminescence; luciferin oxidation; mechanism; single electron transfer.

Among all bioluminescent organisms, the firefly is the most famous, with a high luminescent efficiency of 41%, which is widely used in the fields of biotechnol., biomedicine and so on. The entire bioluminescence (BL) process involves a series of complicated in-vivo chem. reactions. The BL is initiated by the enzymic oxidation of luciferin (LH2). However, the mechanism of the efficient spin-forbidden oxygenation is far from being totally understood. Via MD simulation and QM/MM calculations, this article describes the complete process of oxygenation in real protein. The oxygenation of luciferin is initiated by a single electron transfer from the trivalent anionic LH2 (L3-) to O2 to form 1[L•2-…O2•-]; the entire reaction is carried out along the ground-state potential energy surface to produce the dioxetanone (FDO-) via three transition states and two intermediates. The low energy barriers of the oxygenation reaction and biradical annihilation involved in the reaction explain this spin-forbidden reaction with high efficiency. This study is helpful for understanding the BL initiation of fireflies and the other oxygen-dependent bioluminescent organisms.

Molecules published new progress about Annihilation radiation. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Application In Synthesis of 2591-17-5.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Zhang, Ru’s team published research in Scientific Reports in 2020-12-31 | 2591-17-5

Scientific Reports published new progress about Aquatica lateralis. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Recommanded Product: (S)-2-(6-Hydroxybenzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid.

Zhang, Ru; He, Jinwu; Dong, Zhiwei; Liu, Guichun; Yin, Yuan; Zhang, Xinying; Li, Qi; Ren, Yandong; Yang, Yongzhi; Liu, Wei; Chen, Xianqing; Xia, Wenhao; Duan, Kang; Hao, Fei; Lin, Zeshan; Yang, Jie; Chang, Zhou; Zhao, Ruoping; Wan, Wenting; Lu, Sihan; Peng, Yanqiong; Ge, Siqin; Wang, Wen; Li, Xueyan published the artcile< Genomic and experimental data provide new insights into luciferin biosynthesis and bioluminescence evolution in fireflies>, Recommanded Product: (S)-2-(6-Hydroxybenzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid, the main research area is Lamprigera luciferin bioluminescence evolution.

Abstract: Fireflies are among the most charismatic insects for their spectacular bioluminescence, but the origin and evolution of bioluminescence remain elusive. Especially, the genic basis of luciferin (D-luciferin) biosynthesis and light patterns is largely unknown. Here, we present the high-quality reference genomes of two fireflies Lamprigera yunnana (1053 Mb) and Abscondita terminalis (501 Mb) with great differences in both morphol. and luminous behavior. We sequenced the transcriptomes and proteomes of luminous organs of two species. We created the CRISPR/Cas9-induced mutants of Abdominal B gene without luminous organs in the larvae of A. terminalis and sequenced the transcriptomes of mutants and wild-types. Combining gene expression analyses with comparative genomics, we propose a more complete luciferin synthesis pathway, and confirm the convergent evolution of bioluminescence in insects. Using experiments, the function of the firefly acyl-CoA thioesterase (ACOT1) to convert L-luciferin to D-luciferin was validated for the first time. Comparisons of three-dimension reconstruction of luminous organs and their differentially expressed genes among two species suggest that two pos. genes in the calcium signaling pathway and structural difference of luminous organs may play an important role in the evolution of flash pattern. Altogether, our results provide important resources for further exploring bioluminescence in insects.

Scientific Reports published new progress about Aquatica lateralis. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Recommanded Product: (S)-2-(6-Hydroxybenzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Cheng, Gang’s team published research in Free Radical Biology & Medicine in 2020-02-01 | 2591-17-5

Free Radical Biology & Medicine published new progress about Animal cell line (H2030). 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Computed Properties of 2591-17-5.

Cheng, Gang; Pan, Jing; Podsiadly, Radoslaw; Zielonka, Jacek; Garces, Alexander M.; Dias Duarte Machado, Luiz Gabriel; Bennett, Brian; McAllister, Donna; Dwinell, Michael B.; You, Ming; Kalyanaraman, Balaraman published the artcile< Increased formation of reactive oxygen species during tumor growth: Ex vivo low-temperature EPR and in vivo bioluminescence analyses>, Computed Properties of 2591-17-5, the main research area is ROS tumor growth bioluminescence analysis boronate proluciferin probe ESR; Bioluminescence; EPR; Mitochondria; Oxidants; Tumor growth.

Previous studies have shown that reactive oxygen species (ROS) such as superoxide or hydrogen peroxide generated at low levels can exert a tumor-promoting role via a redox-signaling mechanism. Reports also suggest that both tumorigenesis and tumor growth are associated with enhanced ROS formation. However, whether ROS levels or ROS-derived oxidative marker levels increase during tumor growth remains unknown. In this study, in vivo bioluminescence imaging with a boronate-based pro-luciferin probe was used to assess ROS formation. Addnl., probe-free cryogenic ESR was used to quantify a characteristic aconitase [3Fe4S]+ center that arises in the tumor tissue of mouse xenografts from the reaction of the native [4Fe4S]2+ cluster with superoxide. Results indicated that tumor growth is accompanied by increased ROS formation, and revealed differences in oxidant formation in the inner and outer sections of tumor tissue, resp., demonstrating redox heterogeneity. Studies using luciferin and pro-luciferin probes enabled the assessment of tumor size, ROS formation, and bioenergetic status (e.g., ATP) in luciferase-transfected mice tumor xenografts. Probe-free ex vivo low-temperature ESR can also be translated to clin. studies.

Free Radical Biology & Medicine published new progress about Animal cell line (H2030). 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Computed Properties of 2591-17-5.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Tohidnezhad, Mersedeh’s team published research in International Journal of Molecular Sciences in 2020 | 2591-17-5

International Journal of Molecular Sciences published new progress about Angiogenesis. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Formula: C11H8N2O3S2.

Tohidnezhad, Mersedeh; Kubo, Yusuke; Lichte, Philipp; Heigl, Tobias; Roch, Diana; Pour, Nazanin Barahmand; Bergmann, Christian; Soenmez, Tolga Taha; Hock, Jennifer Vanessa Phi; Fragoulis, Athanassios; Gremse, Felix; Rosenhain, Stefanie; Slowik, Alexander; Bienert, Michaela; Kweider, Nisreen; Wruck, Christoph Jan; Jahr, Holger; Hildebrand, Frank; Pape, Hans Christoph; Neu, Sabine; Fischer, Horst; Pufe, Thomas published the artcile< Effects of strontium-doped β-tricalcium scaffold on longitudinal nuclear factor-kappa beta and vascular endothelial growth factor receptor-2 promoter activities during healing in a murine critical-size bone defect model>, Formula: C11H8N2O3S2, the main research area is strontium doped tricalcium scaffold nuclear factor kappa beta; vascular endothelial growth factor receptor healing murine bone defect; NF-κB; VEGFR-2; bioluminescence; large bone defects; strontium; β-tricalcium phosphate.

It was hypothesized that strontium (Sr)-doped β-tricalcium phosphate (TCP)-based scaffolds have a pos. effect on the regeneration of large bone defects (LBD). Readouts in our mice models were nuclear factor-kappa beta (NF-κB) activity and vascular endothelial growth factor receptor-2 (VEGFR-2) promoter activity during the healing process. A 2-mm critical-size femoral fracture was performed in transgenic NF-κB- and VEGFR-2-luciferase reporter mice. The fracture was filled with a 3D-printed β-TCP scaffold with or without Sr. A bioluminescence in-vivo imaging system was used to sequentially investigate NF-κB and VEGFR-2 expression for two months. After sacrifice, soft and osseous tissue formation in the fracture sites was histol. examined NF-κB activity increased in the β-TCP + Sr group in the latter stage (day 40-60). VEGFR-2 activity increased in the + Sr group from days 0-15 but decreased and showed significantly less activity than the β-TCP and non-scaffold groups from days 40-60. The new bone formation and soft tissue formation in the + Sr group were significantly higher than in the β-TCP group, whereas the percentage of osseous tissue formation in the β-TCP group was significantly higher than in the β-TCP + Sr group. We analyzed longitudinal VEGFR-2 promoter activity and NF-κB activity profiles, as resp. agents of angiogenesis and inflammation, during LBD healing. The extended inflammation phase and eventually more rapid resorption of scaffold caused by the addition of strontium accelerates temporary bridging of the fracture gaps. This finding has the potential to inform an improved treatment strategy for patients who suffer from osteoporosis.

International Journal of Molecular Sciences published new progress about Angiogenesis. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Formula: C11H8N2O3S2.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Liu, Gui-Chun’s team published research in Photochemistry and Photobiology in 2020 | 2591-17-5

Photochemistry and Photobiology published new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Product Details of C11H8N2O3S2.

Liu, Gui-Chun; Dong, Zhi-Wei; Hou, Qing-Bai; He, Jin-Wu; Zhao, Ruo-Ping; Wang, Wen; Li, Xue-Yan published the artcile< Second Rhagophthalmid Luciferase Cloned from Chinese Glow-worm Menghuoius giganteus (Rhagophthalmidae: Elateroidea)>, Product Details of C11H8N2O3S2, the main research area is sequence luciferase mol cloning Rhagophthalmus Menghuoius.

The pH-insensitive beetle luciferases cloned from Rhagophthalmidae, Phengodidae, and Elateridae exhibit great potential application as reporter assays for monitoring gene expression. At present, however, only one luciferase has been reported from the enigmatic and predominantly Asian distributed luminous family Rhagophthalmidae. Here, we cloned the second rhagophthalmid luciferase from the Chinese glow-worm Menghuoius giganteus (Rhagophthalmidae: Elateroidea) by combining reverse transcription polymerase chain reaction (RT-PCR) with rapid amplification of complementary DNA ends (RACE). The luciferase consisted of 546 amino acids and showed high identity to that of Rhagophthalmus ohbai (90.4%). The recombinant M. giganteus luciferase was produced in vitro and exhibited significant bioluminescent activity under neutral conditions (pH 7.8), with low KM for D-luciferin (2.2μM) and ATP (53μM). Activity was highest at 10°C and inactivation occurred at 45°C. This luciferase showed pH-insensitivity and maximum emission spectrum at 560 nm. Phylogenetic analyses based on the deduced amino acids indicated a close relationship between the M. giganteus luciferase and that of R. ohbai. These results increase our understanding of rhagophthalmid luciferases and provide a new resource for the application of luciferases.

Photochemistry and Photobiology published new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Product Details of C11H8N2O3S2.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Wang, Chenchen’s team published research in Analytical Chemistry (Washington, DC, United States) in 2020-12-01 | 2591-17-5

Analytical Chemistry (Washington, DC, United States) published new progress about Bioluminescence (probe). 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Reference of 2591-17-5.

Wang, Chenchen; Du, Wei; Zhang, Tong; Liang, Gaolin published the artcile< A Bioluminescent Probe for Simultaneously Imaging Esterase and Histone Deacetylase Activity in a Tumor>, Reference of 2591-17-5, the main research area is histone deacetylase esterase tumor imaging bioluminescent probe.

The monitoring of esterase (CES) and histone deacetylase (HDAC) activity in living cells has great potential for rapid diagnosis of malignant tumors. At present, using one bioluminescence (BL) probe to simultaneously detect (or image) these two enzymes’ activity in tumors has not been reported. Herein, a bioluminescence “”turn-on”” probe AcAH-Luc (6-acetamidohexanoic acid-D-luciferin) was rationally designed for simultaneously imaging CES and HDAC activity with excellent sensitivity and selectivity. AcAH-Luc was successfully applied in vitro to selectively detect CES and HDAC6, a subtype of HDAC, at a linear concentration range of 0-100 and 0-120 nM with limits of detection (LODs) of 0.495 and 1.14 nM, resp. In vivo results indicated that about 1/2 and 1/3 of the “”turn-on”” BL signal of AcAH-Luc was contributed by CES and HDAC activity in the tumors, resp. We envision that AcAH-Luc might be applied to simultaneously measure (and image) CES and HDAC activity in the clinic for assisting with the precise diagnosis of malignant tumors in the near future.

Analytical Chemistry (Washington, DC, United States) published new progress about Bioluminescence (probe). 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Reference of 2591-17-5.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica