Analyzing the synthesis route of 435294-03-4

This literature about this compound(435294-03-4)Computed Properties of C35H27N2O2Irhas given us a lot of inspiration, and I hope that the research on this compound(Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III)) can be further advanced. Maybe we can get more compounds in a similar way.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III), is researched, Molecular C35H27N2O2Ir, CAS is 435294-03-4, about Triplet Exciton Upconverting Blue Exciplex Host for Deep Blue Phosphors.Computed Properties of C35H27N2O2Ir.

A thermally activated delayed fluorescence (TADF)-type exciplex host employing a novel electron-transport type (n-type) type host managing pos. polarons and stabilizing excitons was developed to elongate the device lifetime of deep blue phosphorescent organic light-emitting diodes (PhOLEDs). The bipolar n-type host was designed to prevent hole leakage and secure hole stability while being stabilized under excitons by introducing a CN-modified carbazole moiety as a weak donor. The TADF-type exciplex host-based blue PhOLEDs showed high (>20%) quantum efficiency with a deep blue color coordinate of (0.14, 0.16) and elongated device lifetime. The device operational lifetime of the blue PhOLEDs bearing the TADF-type exciplex host was extended by more than twice compared to that of the exciplex-free unipolar host. This work suggested a design concept of the n-type host to develop the TADF-type exciplex host for deep blue phosphors to reach a long lifespan in the deep blue PhOLEDs.

This literature about this compound(435294-03-4)Computed Properties of C35H27N2O2Irhas given us a lot of inspiration, and I hope that the research on this compound(Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III)) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

A new synthetic route of 435294-03-4

This literature about this compound(435294-03-4)Related Products of 435294-03-4has given us a lot of inspiration, and I hope that the research on this compound(Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III)) can be further advanced. Maybe we can get more compounds in a similar way.

Related Products of 435294-03-4. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III), is researched, Molecular C35H27N2O2Ir, CAS is 435294-03-4, about Chemically doped hole transporting materials with low cross-linking temperature and high mobility for solution-processed green/red PHOLEDs. Author is Wang, Jingxiang; Liu, Hongli; Wu, Sen; Jia, Yi; Yu, Hang; Li, Xianggao; Wang, Shirong.

Recently, developing insoluble cross-linkable functional layers plays a vital role for solution-processed organic light emitting diodes (OLEDs). Here, 2 vinyl-based cross-linkable hole transporting materials V-TPAVTPD and V-TPAVCBP are designed and synthesized. Cationic photoinitiator 4-octyloxydiphenyliodonium hexafluoroantimonate (OPPI) is 1st introduced to chem. induce vinyl-based photo crosslinking process, aiming at lowering crosslinking temperature and enhancing hole mobility. Crosslinking can occur at expressly low temperature of 120° with >95% solvent resistance. Hole mobility is markedly enhanced with the value >10-3 cm2 V-1 s-1. When applying hole transporting layers (HTLs) to solution-processed green and red phosphorescent OLEDs, devices exhibit excellent properties. The maximum current efficiency of 54.0 cd A-1 (green), 9.8 cd A-1 (red) and external quantum efficiency of 15.5% (green), 15.0% (red) are obtained when OPPI doped V-TPAVCBP serves as HTL. This low temperature feasible crosslinking process to prepare HTLs with preferable hole mobility promotes the development of OLEDs.

This literature about this compound(435294-03-4)Related Products of 435294-03-4has given us a lot of inspiration, and I hope that the research on this compound(Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III)) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Can You Really Do Chemisty Experiments About 435294-03-4

This literature about this compound(435294-03-4)Recommanded Product: 435294-03-4has given us a lot of inspiration, and I hope that the research on this compound(Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III)) can be further advanced. Maybe we can get more compounds in a similar way.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Journal of Physics D: Applied Physics called Realizing high-performance color-tunable WOLED by adjusting the recombination zone and energy distribution in the emitting layer, Author is Zhou, Juan; Kou, Zhiqi; Wang, Lijun; Wang, Baiqian; Chen, Xiang; Sun, Xu; Zheng, Zixuan, which mentions a compound: 435294-03-4, SMILESS is CC1=O[Ir+3]23([N]4=CC=C(C=CC=C5)C5=C4C6=CC=CC=[C-]36)(O=C(C)[CH-]1)[N]7=CC=C(C=CC=C8)C8=C7C9=CC=CC=[C-]29, Molecular C35H27N2O2Ir, Recommanded Product: 435294-03-4.

Color-tunable white organic light-emitting diodes (CT-WOLEDs) having daylight chromaticity and a wide correlated color temperature (CCT) span can mimic our circadian cycle and realize application for lighting or decoration. The effects of the recombination zone and energy distribution on the electro-optical properties and color span are investigated in this paper. We find that it is beneficial to expand the CCT span by increasing the distance between the red ultrathin phosphorescent emissive layer and the center of the recombination zone. By increasing the concentration (y) of mCP in mixed host material in the emitting layer and the thickness (z nm) of the red ultrathin phosphorescent emissive layer, the CCT spans can be expanded towards high CCT and low CCT, resp. The widest CCT span reaches 4032 K (2391-6423 K) in a simple all-phosphorescent CT-WOLED with a maximum luminance and power efficiency of 9249 cd m-2 and 15.35 lm W-1, resp.

This literature about this compound(435294-03-4)Recommanded Product: 435294-03-4has given us a lot of inspiration, and I hope that the research on this compound(Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III)) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Analyzing the synthesis route of 435294-03-4

This literature about this compound(435294-03-4)Computed Properties of C35H27N2O2Irhas given us a lot of inspiration, and I hope that the research on this compound(Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III)) can be further advanced. Maybe we can get more compounds in a similar way.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III), is researched, Molecular C35H27N2O2Ir, CAS is 435294-03-4, about Triplet Exciton Upconverting Blue Exciplex Host for Deep Blue Phosphors.Computed Properties of C35H27N2O2Ir.

A thermally activated delayed fluorescence (TADF)-type exciplex host employing a novel electron-transport type (n-type) type host managing pos. polarons and stabilizing excitons was developed to elongate the device lifetime of deep blue phosphorescent organic light-emitting diodes (PhOLEDs). The bipolar n-type host was designed to prevent hole leakage and secure hole stability while being stabilized under excitons by introducing a CN-modified carbazole moiety as a weak donor. The TADF-type exciplex host-based blue PhOLEDs showed high (>20%) quantum efficiency with a deep blue color coordinate of (0.14, 0.16) and elongated device lifetime. The device operational lifetime of the blue PhOLEDs bearing the TADF-type exciplex host was extended by more than twice compared to that of the exciplex-free unipolar host. This work suggested a design concept of the n-type host to develop the TADF-type exciplex host for deep blue phosphors to reach a long lifespan in the deep blue PhOLEDs.

This literature about this compound(435294-03-4)Computed Properties of C35H27N2O2Irhas given us a lot of inspiration, and I hope that the research on this compound(Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III)) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

A new synthetic route of 435294-03-4

This literature about this compound(435294-03-4)Related Products of 435294-03-4has given us a lot of inspiration, and I hope that the research on this compound(Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III)) can be further advanced. Maybe we can get more compounds in a similar way.

Related Products of 435294-03-4. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III), is researched, Molecular C35H27N2O2Ir, CAS is 435294-03-4, about Chemically doped hole transporting materials with low cross-linking temperature and high mobility for solution-processed green/red PHOLEDs. Author is Wang, Jingxiang; Liu, Hongli; Wu, Sen; Jia, Yi; Yu, Hang; Li, Xianggao; Wang, Shirong.

Recently, developing insoluble cross-linkable functional layers plays a vital role for solution-processed organic light emitting diodes (OLEDs). Here, 2 vinyl-based cross-linkable hole transporting materials V-TPAVTPD and V-TPAVCBP are designed and synthesized. Cationic photoinitiator 4-octyloxydiphenyliodonium hexafluoroantimonate (OPPI) is 1st introduced to chem. induce vinyl-based photo crosslinking process, aiming at lowering crosslinking temperature and enhancing hole mobility. Crosslinking can occur at expressly low temperature of 120° with >95% solvent resistance. Hole mobility is markedly enhanced with the value >10-3 cm2 V-1 s-1. When applying hole transporting layers (HTLs) to solution-processed green and red phosphorescent OLEDs, devices exhibit excellent properties. The maximum current efficiency of 54.0 cd A-1 (green), 9.8 cd A-1 (red) and external quantum efficiency of 15.5% (green), 15.0% (red) are obtained when OPPI doped V-TPAVCBP serves as HTL. This low temperature feasible crosslinking process to prepare HTLs with preferable hole mobility promotes the development of OLEDs.

This literature about this compound(435294-03-4)Related Products of 435294-03-4has given us a lot of inspiration, and I hope that the research on this compound(Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III)) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Can You Really Do Chemisty Experiments About 435294-03-4

This literature about this compound(435294-03-4)Recommanded Product: 435294-03-4has given us a lot of inspiration, and I hope that the research on this compound(Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III)) can be further advanced. Maybe we can get more compounds in a similar way.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Journal of Physics D: Applied Physics called Realizing high-performance color-tunable WOLED by adjusting the recombination zone and energy distribution in the emitting layer, Author is Zhou, Juan; Kou, Zhiqi; Wang, Lijun; Wang, Baiqian; Chen, Xiang; Sun, Xu; Zheng, Zixuan, which mentions a compound: 435294-03-4, SMILESS is CC1=O[Ir+3]23([N]4=CC=C(C=CC=C5)C5=C4C6=CC=CC=[C-]36)(O=C(C)[CH-]1)[N]7=CC=C(C=CC=C8)C8=C7C9=CC=CC=[C-]29, Molecular C35H27N2O2Ir, Recommanded Product: 435294-03-4.

Color-tunable white organic light-emitting diodes (CT-WOLEDs) having daylight chromaticity and a wide correlated color temperature (CCT) span can mimic our circadian cycle and realize application for lighting or decoration. The effects of the recombination zone and energy distribution on the electro-optical properties and color span are investigated in this paper. We find that it is beneficial to expand the CCT span by increasing the distance between the red ultrathin phosphorescent emissive layer and the center of the recombination zone. By increasing the concentration (y) of mCP in mixed host material in the emitting layer and the thickness (z nm) of the red ultrathin phosphorescent emissive layer, the CCT spans can be expanded towards high CCT and low CCT, resp. The widest CCT span reaches 4032 K (2391-6423 K) in a simple all-phosphorescent CT-WOLED with a maximum luminance and power efficiency of 9249 cd m-2 and 15.35 lm W-1, resp.

This literature about this compound(435294-03-4)Recommanded Product: 435294-03-4has given us a lot of inspiration, and I hope that the research on this compound(Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III)) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

A small discovery about 435294-03-4

This literature about this compound(435294-03-4)Recommanded Product: 435294-03-4has given us a lot of inspiration, and I hope that the research on this compound(Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III)) can be further advanced. Maybe we can get more compounds in a similar way.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 435294-03-4, is researched, SMILESS is CC1=O[Ir+3]23([N]4=CC=C(C=CC=C5)C5=C4C6=CC=CC=[C-]36)(O=C(C)[CH-]1)[N]7=CC=C(C=CC=C8)C8=C7C9=CC=CC=[C-]29, Molecular C35H27N2O2IrJournal, Organic Electronics called Carbazole-pyridine pyrroloquinoxaline/benzothiadiazine 1,1-dioxide based bipolar hosts for efficient red PhOLEDs, Author is Patil, Bhausaheb; Pownthurai, B.; Chiou, Shian-Sung; Chen, Wei-Ling; Huang, Dun-Cheng; Jadhav, Yogesh; Chetti, Prabhakar; Chang, Chih-Hao; Chaskar, Atul, the main research direction is carbazole pyridine pyrroloquinoxaline benzothiadiazine dioxide bipolar host PhOLED.Recommanded Product: 435294-03-4.

Two novel bipolar hosts Cbz-Py-PQ and Cbz-Py-SA have been designed, synthesized, and eventually successfully used for fabrication of red phosphorescent organic light-emitting diodes (PhOLEDs). Considering higher hole mobility than that of electron mobility in most of the bipolar host with 1:1 donor: acceptor ratio, herein we have made it 1:2 by linking carbazole (donor core) to pyrroloquinoxaline/benzothiadiazine 1,1-dioxide (acceptor core) through pyridine (acceptor core) featuring donor-acceptor-acceptor (D-A-A) architecture. Structure-property-performance relationship have been realized through evaluation of thermal, photophys. and electrochem. properties of both the mols. Cbz-Py-PQ hosted red PhOLED revealed maximum efficiencies of 16.4%, 9.6 cd A-1 and 9.4 lm W-1 with maximum luminance of 20753 cd m-2 at 11.0 V.

This literature about this compound(435294-03-4)Recommanded Product: 435294-03-4has given us a lot of inspiration, and I hope that the research on this compound(Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III)) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Derivation of elementary reaction about 435294-03-4

This literature about this compound(435294-03-4)Category: thiazolehas given us a lot of inspiration, and I hope that the research on this compound(Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III)) can be further advanced. Maybe we can get more compounds in a similar way.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 435294-03-4, is researched, SMILESS is CC1=O[Ir+3]23([N]4=CC=C(C=CC=C5)C5=C4C6=CC=CC=[C-]36)(O=C(C)[CH-]1)[N]7=CC=C(C=CC=C8)C8=C7C9=CC=CC=[C-]29, Molecular C35H27N2O2IrJournal, Organic Electronics called Carbazole-pyridine pyrroloquinoxaline/benzothiadiazine 1,1-dioxide based bipolar hosts for efficient red PhOLEDs, Author is Patil, Bhausaheb; Pownthurai, B.; Chiou, Shian-Sung; Chen, Wei-Ling; Huang, Dun-Cheng; Jadhav, Yogesh; Chetti, Prabhakar; Chang, Chih-Hao; Chaskar, Atul, the main research direction is carbazole pyridine pyrroloquinoxaline benzothiadiazine dioxide bipolar host PhOLED.Category: thiazole.

Two novel bipolar hosts Cbz-Py-PQ and Cbz-Py-SA have been designed, synthesized, and eventually successfully used for fabrication of red phosphorescent organic light-emitting diodes (PhOLEDs). Considering higher hole mobility than that of electron mobility in most of the bipolar host with 1:1 donor: acceptor ratio, herein we have made it 1:2 by linking carbazole (donor core) to pyrroloquinoxaline/benzothiadiazine 1,1-dioxide (acceptor core) through pyridine (acceptor core) featuring donor-acceptor-acceptor (D-A-A) architecture. Structure-property-performance relationship have been realized through evaluation of thermal, photophys. and electrochem. properties of both the mols. Cbz-Py-PQ hosted red PhOLED revealed maximum efficiencies of 16.4%, 9.6 cd A-1 and 9.4 lm W-1 with maximum luminance of 20753 cd m-2 at 11.0 V.

This literature about this compound(435294-03-4)Category: thiazolehas given us a lot of inspiration, and I hope that the research on this compound(Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III)) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Downstream Synthetic Route Of 435294-03-4

In addition to the literature in the link below, there is a lot of literature about this compound(Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III))COA of Formula: C35H27N2O2Ir, illustrating the importance and wide applicability of this compound(435294-03-4).

COA of Formula: C35H27N2O2Ir. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III), is researched, Molecular C35H27N2O2Ir, CAS is 435294-03-4, about The width of exciton formation zone dominates the performance of phosphorescent organic light emitting diodes. Author is Sun, Weidong; Wang, Shiyu; Jin, Shuting; Guan, Xi; Liu, Wenxing; Zhou, Liang; Qin, Dashan.

Abstract: Phosphorescent organic light emitting diodes (PHOLEDs) have been fabricated with structure of indium tin oxide/MoO3 doped 4,4′-N,N’-dicarbazole-biphenyl (CBP) 30 nm/tris(4-carbazoyl-9-ylphenyl)amine 10 nm/CBP doped with tris(2-phenylpyridine)iridium(III) (CBP:Ir(ppy)3) x/bathocuproine 50 nm/LiF 1 nm/Al, where x = 2.5, 5, 10, and 20 nm, resp. The current efficiency (CE) of device with x = 10 nm is higher than those with x = 2.5 and 5 nm, mostly because the width of exciton formation zone (5.7 nm) with x = 10 nm is larger than those (2.5 and 5 nm) with x = 2.5 and 5 nm. However, the c.d. with x = 10 nm decreases than those with x = 2.5 and 5 nm at a certain driving voltage, since the ∼ 4.3 nm CBP:Ir(ppy)3 accommodating no exciton formation with x = 10 nm plays a role of transporting holes, raising ohmic loss of hole and thereby increasing driving voltage. When x increases from 10 to 20 nm, the width of exciton formation zone rises from 5.7 to 6.8 nm with CE almost unchanged, and the c.d. decreases as a result of increased ohmic loss of hole. The current research is useful to develop high-efficiency and low-driving voltage PHOLEDs.

In addition to the literature in the link below, there is a lot of literature about this compound(Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III))COA of Formula: C35H27N2O2Ir, illustrating the importance and wide applicability of this compound(435294-03-4).

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Decrypt The Mystery Of 435294-03-4

In addition to the literature in the link below, there is a lot of literature about this compound(Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III))HPLC of Formula: 435294-03-4, illustrating the importance and wide applicability of this compound(435294-03-4).

HPLC of Formula: 435294-03-4. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III), is researched, Molecular C35H27N2O2Ir, CAS is 435294-03-4, about Remarkable enhancement of efficiencies for red, green, and blue tandem phosphorescent organic light-emitting diodes by utilizing a non-doped photovoltaic-type charge generation unit. Author is Chen, Ai; Wang, Zhen; Xie, JiaFeng; Lu, YongSheng; Chen, JiaWen; Zhang, WenXia.

We have achieved a remarkable enhancement in current efficiencies and power efficiencies for red, green, and blue tandem phosphorescent organic LEDs (T-PhOLEDs) by employing LiF/Al/fullerene/zinc-phthalocyanine/MoO3 as a charge generation unit (CGU). Fullerene/zincphthalocyanine with a proper absorption property in the visible region can absorb a part of photons from emission layers within T-PhOLEDs, which facilitates the charge generation and separation within CGU. At the identical luminance of 1,000 cd m-2, the current efficiencies for red, green, and blue T-PhOLEDs are 3.3-, 2.1-, and 2.9-fold those of the corresponding single-unit devices, and power efficiencies are increased by 72.2%, 13.6%, and 37.2%, resp.

In addition to the literature in the link below, there is a lot of literature about this compound(Bis[2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III))HPLC of Formula: 435294-03-4, illustrating the importance and wide applicability of this compound(435294-03-4).

Reference:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica