Ryu, Je-Won et al. published their research in Journal of Cellular and Molecular Medicine in 2022 | CAS: 63208-82-2

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazoles frequently appear in peptide studies. Thiazoles can also be used as protected formyl groups, which can be released in later stages of complex natural product synthesis. There are numerous natural products that possess a thiazole ring with broad pharmacological activities. Thiamine, also known as vitamin B1, possesses a thiazole ring linked with 2-methylpyrimidine-4-amine as hydrochloride salt.Recommanded Product: 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide

Radiation-induced C-reactive protein triggers apoptosis of vascular smooth muscle cells through ROS interfering with the STAT3/Ref-1 complex was written by Ryu, Je-Won;Jung, In-Hye;Park, Eun-Young;Kim, Kang-Hyun;Kim, Kyunggon;Yeom, Jeonghun;Jung, Jinhong;Lee, Sang-wook. And the article was included in Journal of Cellular and Molecular Medicine in 2022.Recommanded Product: 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide The following contents are mentioned in the article:

Damage to normal tissue can occur over a long period after cancer radiotherapy. Free radical by radiation can initiate or accelerate chronic inflammation, which can lead to atherosclerosis. However, the underlying mechanisms remain unclear. Vascular smooth muscle cells (VSMCs) proliferate in response to JAK/STAT3 signalling. C-reactive protein (CRP) can induce VSMCs apoptosis via triggering NADPH oxidase (NOX). Apoptotic VSMCs promote instability and inflammation of atherosclerotic lesions. Herein, we identified a VSMCs that switched from proliferation to apoptosis through was enhanced by radiation-induced CRP. NOX inhibition using lentiviral sh-p22phox prevented apoptosis upon radiation-induced CRP. CRP overexpression reduced the amount of STAT3/Ref-1 complex, decreased JAK/STAT phosphorylation and formed a new complex of Ref-1/CRP in VSMC. Apoptosis of VSMCs was further increased by CRP co-overexpressed with Ref-1. Functional inhibition of NOX or p53 also prevented apoptotic activity of the CRP-Ref-1 complex. Immunofluorescence showed co-localization of CRP, Ref-1 and p53 with α-actin-pos. VSMC in human atherosclerotic plaques. In conclusion, radiation-induced CRP increased the VSMCs apoptosis through Ref-1, which dissociated the STAT3/Ref-1 complex, interfered with JAK/STAT3 activity, and interacted with CRP-Ref-1, thus resulting in transcription-independent cell death via p53. Targeting CRP as a vascular side effect of radiotherapy could be exploited to improve curability. This study involved multiple reactions and reactants, such as 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2Recommanded Product: 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide).

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazoles frequently appear in peptide studies. Thiazoles can also be used as protected formyl groups, which can be released in later stages of complex natural product synthesis. There are numerous natural products that possess a thiazole ring with broad pharmacological activities. Thiamine, also known as vitamin B1, possesses a thiazole ring linked with 2-methylpyrimidine-4-amine as hydrochloride salt.Recommanded Product: 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Jalil, Hayder AbdulHasan et al. published their research in Journal of population therapeutics and clinical pharmacology in 2022 | CAS: 63208-82-2

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. The higher aromaticity of thiazole is due to delocalization of a lone pair of sulfur electrons across the ring, which is evidenced by chemical shifts of ring hydrogen at δ 7.27 and 8.77 ppm (C2 and C4), indicating diamagnetic ring current. There are numerous natural products that possess a thiazole ring with broad pharmacological activities. Thiamine, also known as vitamin B1, possesses a thiazole ring linked with 2-methylpyrimidine-4-amine as hydrochloride salt.Recommanded Product: 63208-82-2

SIRT1720 promotes survival of corneal epithelial cells via the P53 pathway. was written by Jalil, Hayder AbdulHasan;Al-Sudani, Basma Talib;Jasim, Ghaith Ali. And the article was included in Journal of population therapeutics and clinical pharmacology in 2022.Recommanded Product: 63208-82-2 The following contents are mentioned in the article:

PURPOSE: To investigate the protective role of SRT1720 (SIRT1 activator) against the oxidative stress caused by H2O2 in the corneal cell line. METHODS: Human corneal (2.040 pRSV-T) cell lines were cultured and treated with SRT1720 (as SIRT1 activator) and nicotinamide (NAM, a SIRT1 inhibitor), and incubated with H2O2. The expression level of SIRT1, p53, and acetyl-p53 was measured by western blot. Propidium iodine/annexin V-FITC staining, and flow cytometry was used to evaluate apoptosis. The trypan blue assay was used to assess the morphological modifications that occurred after the treatment, and Pifithrin-α (PFT-α) was used to inhibit the p53 pathway. RESULTS: The investigation revealed that under oxidative stress, SRT1720 caused a reduction in acetyl-p53 expression and increased SIRT1 expression. It was also found that under oxidative stress, SRT1720 suppressed apoptosis. In comparison, NAM promoted cell apoptosis under oxidative stress. NAM’s destructive effect was eliminated by PFT-α, a suppressor of the p53 pathway. PFT-α reduced the morphological changes in 2.040 pRSV-T cell lines compared to NAM treatment and inhibited apoptosis. CONCLUSIONS: The protective effects of the SIRT1 activator (SRT1720) indicate that H2O2 induces oxidative stress-associated cell damage. The results also encouraged us to consider using SRT1720 to improve corneal safety and reduce the adverse effects of oxidative damage. This study involved multiple reactions and reactants, such as 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2Recommanded Product: 63208-82-2).

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. The higher aromaticity of thiazole is due to delocalization of a lone pair of sulfur electrons across the ring, which is evidenced by chemical shifts of ring hydrogen at δ 7.27 and 8.77 ppm (C2 and C4), indicating diamagnetic ring current. There are numerous natural products that possess a thiazole ring with broad pharmacological activities. Thiamine, also known as vitamin B1, possesses a thiazole ring linked with 2-methylpyrimidine-4-amine as hydrochloride salt.Recommanded Product: 63208-82-2

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Xi, Yue et al. published their research in Toxicology and Applied Pharmacology in 2018 | CAS: 63208-82-2

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazole rings are planar and aromatic. Thiazoles are characterized by larger pi-electron delocalization than the corresponding oxazoles and have therefore greater aromaticity. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Recommanded Product: 63208-82-2

Triptolide induces p53-dependent cardiotoxicity through mitochondrial membrane permeabilization in cardiomyocytes was written by Xi, Yue;Wang, Wenwen;Wang, Li;Pan, Ji;Cheng, Yisen;Shen, Feihai;Huang, Zhiying. And the article was included in Toxicology and Applied Pharmacology in 2018.Recommanded Product: 63208-82-2 The following contents are mentioned in the article:

Triptolide (TP), a major active component of Tripterygium wilfordii Hook f., is widely used in the treatment of inflammation and autoimmune disorders. Its clin. application is limited by severe adverse effects, especially cardiotoxicity. Accumulative evidences indicate that TP induces DNA damage by inhibiting RNA polymerase. Considering the relationship among DNA damage, p53, and the role of p53 in mitochondria-dependent apoptosis, we speculate that TP-induced cardiotoxicity results from p53 activation. In this study, the role of p53 in TP-induced cardiotoxicity was investigated in H9c2 cells, primary cardiomyocytes, and C57BL/6 genetic background p53-/- mice. p53 protein level was elevated by TP in vitro and in acute heart injury models. With TP administration, p53 deficiency prevented heart histol. injury and decreased serum cardiac troponin I (cTn-I) and apoptotic proteins. Mechanistically, immunoblotting and immunofluorescence staining identified that TP-induced toxicity is dependent on p53 nuclear translocation and transactivation of Bcl2 family genes, leading to mitochondrial outer membrane permeabilization (MOMP) and mitochondria dysfunction. Consistently, p53 antagonist PFTα counteracted TP-induced p53 overexpression and regulation of Bcl2 family transcription, which improved mitochondrial membrane integrity and prevented apoptosis. These results suggest that TP-induced cardiotoxicity is p53-dependent by promoting Bax-induced mitochondria-mediated apoptosis. This study involved multiple reactions and reactants, such as 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2Recommanded Product: 63208-82-2).

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazole rings are planar and aromatic. Thiazoles are characterized by larger pi-electron delocalization than the corresponding oxazoles and have therefore greater aromaticity. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Recommanded Product: 63208-82-2

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Kageyama, Masaaki et al. published their research in PLoS One in 2019 | CAS: 63208-82-2

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. The thiazole ring is notable as a component of the vitamin thiamine (B1). Thiazole is a versatile building block for the construction and lead generation of new drug discoveries. Numerous diazole-based compounds are in clinical use as anticancer, antileukemic, antiinflammatory, antiviral, antifungal, antirheumatic, immunomodulator, and antiparasitic agents.Related Products of 63208-82-2

Chemical proteasome inhibition as a novel animal model of inner retinal degeneration in rats was written by Kageyama, Masaaki;Ota, Takashi;Sasaoka, Masaaki;Katsuta, Osamu;Shinomiya, Katsuhiko. And the article was included in PLoS One in 2019.Related Products of 63208-82-2 The following contents are mentioned in the article:

Chem. proteasome inhibition has been a valuable animal model of neurodegeneration to uncover roles for the ubiquitin-proteasome system in the central nervous system. However, little is known about the effects of chem. proteasome inhibitors on retinal integrity. Therefore, we characterized the effects of structurally different chem. proteasome inhibitors on the retinal morphol. and the mechanisms of their action in the normal adult rat eyes. Intravitreal injection of MG-262 and other proteasome inhibitors led to inner retinal degeneration. MG-262-induced inner retinal degeneration was accompanied by reduced proteasome activity, increased poly-ubiquitinated protein levels, and increased pos. immunostaining of ubiquitin, 20S proteasome subunit and GADD153/CHOP in the retina. Its retinal degenerative effect was also associated with reduced retinal neurofilament light chain gene expression, reflecting retinal ganglion cell death. MG-262-induced neurofilament light chain downregulation was largely resistant to pharmacol. modulation including endoplasmic reticulum stress, apoptosis or MAP kinase inhibitors. Thus, this study provides further evidence of roles for the ubiquitin-proteasome system in the maintenance of the retinal structural integrity. Chem. proteasome inhibition may be used as a novel animal model of inner retinal degeneration, including retinal ganglion cell loss, which warrants further anal. of the mol. mechanisms underlying its retinal degenerative effect. This study involved multiple reactions and reactants, such as 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2Related Products of 63208-82-2).

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. The thiazole ring is notable as a component of the vitamin thiamine (B1). Thiazole is a versatile building block for the construction and lead generation of new drug discoveries. Numerous diazole-based compounds are in clinical use as anticancer, antileukemic, antiinflammatory, antiviral, antifungal, antirheumatic, immunomodulator, and antiparasitic agents.Related Products of 63208-82-2

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Abrantes, Aline B. de P. et al. published their research in Photochemistry and Photobiology in 2019 | CAS: 63208-82-2

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazole is a five-membered, unsaturated, planar, π-excessive heteroaromatic containing one sulfur atom and one pyridine-type nitrogen atom at position 3 of the cyclic ring system.Various laboratory methods exist for the organic synthesis of thiazoles. For example, 2,4-dimethylthiazole is synthesized from thioacetamide and chloroacetone.Recommanded Product: 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide

p53-Dependent and p53-Independent Responses of Cells Challenged by Photosensitization was written by Abrantes, Aline B. de P.;Dias, Gustavo C.;Souza-Pinto, Nadja C.;Baptista, Mauricio S.. And the article was included in Photochemistry and Photobiology in 2019.Recommanded Product: 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide The following contents are mentioned in the article:

The p53 protein exerts fundamental roles in cell responses to a variety of stress stimuli. It has clear roles in controlling cell cycle, triggering apoptosis, activating autophagy and modulating DNA damage response. Little is known about the role of p53 in autophagy-associated cell death, which can be induced by photoactivation of photosensitizers within cells. The photosensitizer 1,9-di-Me methylene blue (DMMB) within nanomolar concentration regimes has specific intracellular targets (mitochondria and lysosomes), photoinducing a typical scenario of cell death with autophagy. Importantly, in consequence of its subcellular localization, photoactive DMMB induces selective damage to mitochondrial DNA, saving nuclear DNA. By challenging cells having different p53 protein levels, we investigated whether p53 modulates DMMB/light-induced phototoxicity and cell cycle dynamics. Cells lacking p53 activity were slightly more resistant to photoactivated DMMB, which was correlated with a smaller sub-G1 population, indicative of a lower level of apoptosis. DMMB photosensitization seems to induce mostly autophagy-associated cell death and S-phase cell cycle arrest with replication stress. Remarkably, these responses were independent on the p53 status, indicating that p53 is not involved in either process. Despite describing some p53-related responses in cells challenged by photosensitization, our results also provide novel information on the consequences of DMMB phototoxicity. This study involved multiple reactions and reactants, such as 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2Recommanded Product: 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide).

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazole is a five-membered, unsaturated, planar, π-excessive heteroaromatic containing one sulfur atom and one pyridine-type nitrogen atom at position 3 of the cyclic ring system.Various laboratory methods exist for the organic synthesis of thiazoles. For example, 2,4-dimethylthiazole is synthesized from thioacetamide and chloroacetone.Recommanded Product: 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Zager, Richard A. et al. published their research in American Journal of Physiology in 2019 | CAS: 63208-82-2

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. The thiazole ring has been identified as a central feature of numerous natural products, perhaps the most famous example of which is epothilone. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Reference of 63208-82-2

Acute kidney injury induces dramatic p21 upregulation via a novel, glucocorticoid-activated, pathway was written by Zager, Richard A.;Johnson, Ali C. M.. And the article was included in American Journal of Physiology in 2019.Reference of 63208-82-2 The following contents are mentioned in the article:

A proposed mechanism is oxidant stress-induced activation of p53, the dominant p21 transcription factor. Glycerol-induced rhabdomyolysis induces profound renal oxidant stress. Hence, we studied this AKI model to determine whether p53 activation corresponds with p21 gene induction and/or whether alternative mechanism(s) might be involved. CD-1 mice were subjected to glycerol-induced AKI. After 4 or 18 h, plasma, urinary, and renal cortical p21 protein and mRNA levels were assessed. Renal p53 activation was gauged by measurement of both total and activated (Ser15-phosphorylated) p53 and p53 mRNA levels. Glycerol evoked acute, progressive increases in renal cortical p21 mRNA and protein levels. Corresponding plasma (~25-fold) and urinary (~75-fold) p21 elevations were also observed Renal cortical ratio of total to phosphorylated (Ser15) p53 rose three- to fourfold. However, the p53 inhibitor pifithrin-a failed to block glycerol-induced p21 gene induction, suggesting that an alternative p21 activator might also be at play. To this end, it was established that glycerol-induced AKI 1) dramatically increased plasma (~5-fold) and urinary (~75-fold) cortisol levels, 2) the glucocorticoid receptor antagonist mifepristone blocked glycerol-induced p21 mRNA and protein accumulation, and 3) dexamethasone or cortisol injections markedly increased p21 protein and mRNA in both normal and glycerol-treated mice, although no discernible p53 protein or mRNA increases were observed This study involved multiple reactions and reactants, such as 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2Reference of 63208-82-2).

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. The thiazole ring has been identified as a central feature of numerous natural products, perhaps the most famous example of which is epothilone. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Reference of 63208-82-2

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Pan, Jianqing et al. published their research in Bioscience Reports in 2019 | CAS: 63208-82-2

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazoles frequently appear in peptide studies. Thiazoles can also be used as protected formyl groups, which can be released in later stages of complex natural product synthesis.Various laboratory methods exist for the organic synthesis of thiazoles. For example, 2,4-dimethylthiazole is synthesized from thioacetamide and chloroacetone.Safety of 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide

Ginkgetin attenuates cerebral ischemia-reperfusion induced autophagy and cell death via modulation of the NF-κB/p53 signaling pathway was written by Pan, Jianqing;Li, Xiang;Guo, Fei;Yang, Zhigang;Zhang, Lingling;Yang, Chunshui. And the article was included in Bioscience Reports in 2019.Safety of 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide The following contents are mentioned in the article:

Cerebral ischemia-reperfusion (I/R) injury is the key to fatality in cerebrovascular accident, hence further endeavor is warranted to delineate the mechanism underlying its lethal aggravation procedure. In the present study, we aimed to elucidate the anti-autophagy and anti-apoptosis effects of ginkgetin via nuclear factor κ (NF-κ)/p53 pathway in cerebral I/R rats. Rats were administrated 2-h occlusion of right middle cerebral artery before the 24-h reperfusion followed. There were three doses of ginkgetin (25, 50, 100 mg/kg) given i.p. (i.p.) after the 2-h ischemia, and Pifithrin-a (PFT- α, p53 inhibitor), SN50 (NF-κ inhibitor) and 3-methyladenine (3-MA, autophagy inhibitor) was administered 20 min before the ischemia, resp. The neurol. deficits decreased significantly with the administration of ginkgetin. The concentrations of microtubule-associated protein 1 light chain 3-II and p53 were significantly decreased by PFT- α, 3-MA and ginkgetin. The concentrations of Beclin 1, damage-regulated autophagy modulator, cathepsin B and cathepsin D were significantly decreased due to the administration of PFT- α, ginkgetin and SN50. Furthermore, the concentrations of Bax and p53-upregulated modulator of apoptosis were significantly decreased with that of Bcl-2 being significantly increased by administration of SN50, PFT- α and ginkgetin. Ginkgetin can alleviate cerebral ischemia/reperfusion induced autophagy and apoptosis by inhibiting the NF-κ/p53 signaling pathway. This study involved multiple reactions and reactants, such as 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2Safety of 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide).

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazoles frequently appear in peptide studies. Thiazoles can also be used as protected formyl groups, which can be released in later stages of complex natural product synthesis.Various laboratory methods exist for the organic synthesis of thiazoles. For example, 2,4-dimethylthiazole is synthesized from thioacetamide and chloroacetone.Safety of 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

He, Wei et al. published their research in Journal of Cellular and Molecular Medicine in 2020 | CAS: 63208-82-2

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazoles in peptides or their ability to bind proteins, DNA and RNA has led to many synthetic studies and new applications. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Category: thiazole

Lobetyolin induces apoptosis of colon cancer cells by inhibiting glutamine metabolism was written by He, Wei;Tao, Weiwei;Zhang, Feng;Jie, Qian;He, Yun;Zhu, Wei;Tan, Jiani;Shen, Weixing;Li, Liu;Yang, Ye;Cheng, Haibo;Sun, Dongdong. And the article was included in Journal of Cellular and Molecular Medicine in 2020.Category: thiazole The following contents are mentioned in the article:

The purpose of the present study was to evaluate the anti-cancer property of Lobetyolin on colorectal cancer and explore its potential mechanism. Lobetyolin was incubated with HCT-116 cells in the absence or presence of ASCT2 inhibitor Benser or p53 inhibitor Pifithrin-α. The levels of glutamine, glutamic acid, α-ketoglutarate, ATP and GSH were determined to measure the glutamine metabolism Annexin V-FITC/PI staining and TUNEL assay were applied to estimate the apoptotic condition. The levels of ASCT2 were examined by RT-qPCR, Western blot and immunofluorescence staining. The expressions of cleaved-caspase-3, caspase-3, cleaved-caspase-7, caspase-7, cleaved-PARP, PARP, p53, p21, bax and survivin were detected using Western blot anal. As a result, the treatment with Lobetyolin effectively induced apoptosis and glutamine metabolism in HCT-116 cells through ASCT2 signalling. The inhibition of ASCT2 reduced the glutamine-related biomarkers and augmented the apoptotic process. We further found that the effect of Lobetyolin on HCT-116 was related to the expressions of p21 and bax, and transportation of p53 to nucleus. The inhibition of p53 by Pifithrin-α promoted the inhibitory effect of Lobetyolin on ASCT2-mediated apoptosis. Lobetyolin also exerted anti-cancer property in nude mice. In conclusion, the present work suggested that Lobetyolin could induce the apoptosis via the inhibition of ASCT2-mediated glutamine metabolism, which was possibly governed by p53. This study involved multiple reactions and reactants, such as 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2Category: thiazole).

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazoles in peptides or their ability to bind proteins, DNA and RNA has led to many synthetic studies and new applications. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Category: thiazole

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Qiu, Lin et al. published their research in Biochemical and Biophysical Research Communications in 2021 | CAS: 63208-82-2

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. The thiazole ring is notable as a component of the vitamin thiamine (B1). The pyridine-type nitrogen in the thiazole ring deactivates the ring for electrophilic substitution reactions, which is further reduced in acid due to protonation of the thiazole ring.Computed Properties of C16H19BrN2OS

FKBP11 promotes cell proliferation and tumorigenesis via p53-related pathways in oral squamous cell carcinoma was written by Qiu, Lin;Liu, Han;Wang, Shuang;Dai, Xiao-Hua;Shang, Jian-Wei;Lian, Xiao-Li;Wang, Guan-Hua;Zhang, Jun. And the article was included in Biochemical and Biophysical Research Communications in 2021.Computed Properties of C16H19BrN2OS The following contents are mentioned in the article:

Oral squamous cell carcinoma (OSCC) is one of the causes of cancer-related death worldwide. The abnormal proliferation ability of OSCC has become one of the major reasons for its poor prognosis. FK-506 binding protein 11 (FKBP11) is abnormally expressed in malignant tumors and affects many biol. processes. The purpose of this study is to investigate the effect of FKBP11 on cell proliferation in OSCC and explore the possible regulatory mechanism. The expression of FKBP11 was detected by western blotting (WB) and/or real-time PCR in OSCC and paracancerous normal tissues in tongue squamous cell carcinoma (TSCC) cell lines, revealing high expression in OSCC and CAL-27 cells. Furthermore, FKBP11 knockdown inhibited the proliferation of CAL-27 cells by CCK-8 and colony formation assays. G2/M arrest and induction of apoptosis were observed using flow cytometry, Hoechst 33258 and Calcein-AM/PI staining, accompanied by changes in some cell cycle- and apoptosis-related proteins, including CDK1, Cyclin B1, p21, p27, p53, Bax, Bcl-2 and Caspase-3. Addnl., the expression of these proteins can be reversed by the use of pifithrin-α (PFT-α), a p53 inhibitor. An in vivo xenograft model further confirmed that FKBP11 enhanced OSCC progression. In conclusion, FKBP11 could promote cell proliferation by regulating G2/M phase and apoptosis via the p53/p21/p27 and p53/Bcl-2/Bax pathways, resp., which suggests that it may be a new candidate target for the treatment of OSCC. This study involved multiple reactions and reactants, such as 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2Computed Properties of C16H19BrN2OS).

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. The thiazole ring is notable as a component of the vitamin thiamine (B1). The pyridine-type nitrogen in the thiazole ring deactivates the ring for electrophilic substitution reactions, which is further reduced in acid due to protonation of the thiazole ring.Computed Properties of C16H19BrN2OS

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Liu, Min et al. published their research in International Journal of Biological Sciences in 2020 | CAS: 63208-82-2

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazoles frequently appear in peptide studies. Thiazoles can also be used as protected formyl groups, which can be released in later stages of complex natural product synthesis. Thiazole is a versatile building block for the construction and lead generation of new drug discoveries. Numerous diazole-based compounds are in clinical use as anticancer, antileukemic, antiinflammatory, antiviral, antifungal, antirheumatic, immunomodulator, and antiparasitic agents.HPLC of Formula: 63208-82-2

IC261, a specific inhibitor of CK1δ/ε, promotes aerobic glycolysis through p53-dependent mechanisms in colon cancer was written by Liu, Min;Hu, Yuhan;Lu, Shuya;Lu, Manman;Li, Jingsong;Chang, Haimin;Jia, Huijie;Zhou, Min;Ren, Feng;Zhong, Jiateng. And the article was included in International Journal of Biological Sciences in 2020.HPLC of Formula: 63208-82-2 The following contents are mentioned in the article:

Casein kinase 1δ (CK1δ) and casein kinase 1ε (CK1ε) have been proposed to be involved in DNA replication, differentiation and apoptosis, thus participating in the regulation of tumorigenesis. However, their functions in colon cancer and the underlying mechanism remain unclear. Here, we found that the expression of CK1ε and CK1δ increased significantly in cancer tissues and the upregulation of CK1ε and CK1δ were closely related to poor differentiation, advanced TNM stage and poor prognosis of colon cancer. CK1δ/ε inhibitor IC261 could induce a decrease in cell survival and proliferation, and an increase in apoptosis in colon cancer cells. Interestingly, IC261 increased the level of aerobic glycolysis in colon cancer cells. Meanwhile, IC261 caused the decrease of p53 protein level and the misregulation of glycolysis related genes (TIGAR, G6PD, GLUT1) which are closely related to the regulation of glycolysis by p53. Inhibiting p53 by siRNA or inhibitor could significantly attenuate the upregulation of aerobic glycolysis induced by IC261. Finally, inhibition of aerobic glycolysis can further increase the cytotoxicity induced by IC261. Collectively, our results revealed that IC261 could inhibit the growth of colon cancer cells and increase the level of aerobic glycolysis, which is regulated by p53-dependent manner. This result suggested that targeting CK1δ/ε and glycolysis might be a valuable strategy treatment and combination therapies for colon cancer. This study involved multiple reactions and reactants, such as 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2HPLC of Formula: 63208-82-2).

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazoles frequently appear in peptide studies. Thiazoles can also be used as protected formyl groups, which can be released in later stages of complex natural product synthesis. Thiazole is a versatile building block for the construction and lead generation of new drug discoveries. Numerous diazole-based compounds are in clinical use as anticancer, antileukemic, antiinflammatory, antiviral, antifungal, antirheumatic, immunomodulator, and antiparasitic agents.HPLC of Formula: 63208-82-2

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica