Gadekar, Sachin P. et al. published their research in Research on Chemical Intermediates in 2021 | CAS: 16112-21-3

2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3) belongs to thiazole derivatives. Thiazole is a five-membered, unsaturated, planar, π-excessive heteroaromatic containing one sulfur atom and one pyridine-type nitrogen atom at position 3 of the cyclic ring system. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Recommanded Product: 2-(4-Methylphenyl)benzothiazole

Ruthenium silicate (RS-1) zeolite: novel heterogeneous efficient catalyst for synthesis of 2-arylbenzothiazole derivatives was written by Gadekar, Sachin P.;Lande, Machhindra K.. And the article was included in Research on Chemical Intermediates in 2021.Recommanded Product: 2-(4-Methylphenyl)benzothiazole This article mentions the following:

Mesoporous silicate and transition metal (Ru+3) containing mesoporous silicate materials or ruthenium silicate Ru+3/Si+4 where synthesis by using hydrothermal process. Mesoporous ruthenium silicate (RS-1) and zeolite catalyst have been successfully synthesized with variable molar ratio such as (a) Ru:Si 1:100, (b) Ru:Si 1:150, (c) Ru:Si 1:200. The elemental composition, structural morphol., crystal phase and properties and various parameters of the catalyst were examined by Fourier transform IR spectroscopy, SEM, powder X-ray diffraction. Energy dispersive X-ray pattern/spectroscopy anal. EDX/EDS, where as the activity of obtained catalysts was tested in the Willgerodt-Kindler synthesis between 2-aminothiophenol and substituted aryl aldehyde (1:1 mol) to form a 2-arylbenzothiazole. The novelty of the presented work was the ruthenium (Ru+3) metal impregnations in silicate framework for the synthesis of novel ruthenium silicate (RS-1) zeolite as a catalyst and the investigation of the various parameters, role, its stability and catalytic activity in the Willgerodt-Kindler (combined both Knovenagel and Maichel addition reaction) synthesis. The developed protocol has several benefits such as short reaction time, mild reaction condition, and good reusability of catalyst. Graphic abstract: [graphic not available: see fulltext]. In the experiment, the researchers used many compounds, for example, 2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3Recommanded Product: 2-(4-Methylphenyl)benzothiazole).

2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3) belongs to thiazole derivatives. Thiazole is a five-membered, unsaturated, planar, π-excessive heteroaromatic containing one sulfur atom and one pyridine-type nitrogen atom at position 3 of the cyclic ring system. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Recommanded Product: 2-(4-Methylphenyl)benzothiazole

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Gadekar, Sachin P. et al. published their research in Research on Chemical Intermediates in 2021 | CAS: 16112-21-3

2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3) belongs to thiazole derivatives. Thiazole is a five-membered, unsaturated, planar, π-excessive heteroaromatic containing one sulfur atom and one pyridine-type nitrogen atom at position 3 of the cyclic ring system. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Recommanded Product: 2-(4-Methylphenyl)benzothiazole

Ruthenium silicate (RS-1) zeolite: novel heterogeneous efficient catalyst for synthesis of 2-arylbenzothiazole derivatives was written by Gadekar, Sachin P.;Lande, Machhindra K.. And the article was included in Research on Chemical Intermediates in 2021.Recommanded Product: 2-(4-Methylphenyl)benzothiazole This article mentions the following:

Mesoporous silicate and transition metal (Ru+3) containing mesoporous silicate materials or ruthenium silicate Ru+3/Si+4 where synthesis by using hydrothermal process. Mesoporous ruthenium silicate (RS-1) and zeolite catalyst have been successfully synthesized with variable molar ratio such as (a) Ru:Si 1:100, (b) Ru:Si 1:150, (c) Ru:Si 1:200. The elemental composition, structural morphol., crystal phase and properties and various parameters of the catalyst were examined by Fourier transform IR spectroscopy, SEM, powder X-ray diffraction. Energy dispersive X-ray pattern/spectroscopy anal. EDX/EDS, where as the activity of obtained catalysts was tested in the Willgerodt-Kindler synthesis between 2-aminothiophenol and substituted aryl aldehyde (1:1 mol) to form a 2-arylbenzothiazole. The novelty of the presented work was the ruthenium (Ru+3) metal impregnations in silicate framework for the synthesis of novel ruthenium silicate (RS-1) zeolite as a catalyst and the investigation of the various parameters, role, its stability and catalytic activity in the Willgerodt-Kindler (combined both Knovenagel and Maichel addition reaction) synthesis. The developed protocol has several benefits such as short reaction time, mild reaction condition, and good reusability of catalyst. Graphic abstract: [graphic not available: see fulltext]. In the experiment, the researchers used many compounds, for example, 2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3Recommanded Product: 2-(4-Methylphenyl)benzothiazole).

2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3) belongs to thiazole derivatives. Thiazole is a five-membered, unsaturated, planar, π-excessive heteroaromatic containing one sulfur atom and one pyridine-type nitrogen atom at position 3 of the cyclic ring system. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Recommanded Product: 2-(4-Methylphenyl)benzothiazole

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Kaloglu, Murat et al. published their research in Chinese Journal of Chemistry in 2018 | CAS: 16112-21-3

2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3) belongs to thiazole derivatives. The higher aromaticity of thiazole is due to delocalization of a lone pair of sulfur electrons across the ring, which is evidenced by chemical shifts of ring hydrogen at 未 7.27 and 8.77 ppm (C2 and C4), indicating diamagnetic ring current. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Computed Properties of C14H11NS

Direct C-H Bond Activation of Benzoxazole and Benzothiazole with Aryl Bromides Catalyzed by Palladium(II)-N-heterocyclic Carbene Complexes was written by Kaloglu, Murat;Kaloglur, Nazan;Oezdemir, Ismail. And the article was included in Chinese Journal of Chemistry in 2018.Computed Properties of C14H11NS This article mentions the following:

Herein, a series of novel palladium(II)-NHC complexes (NHC=N-heterocyclic carbene) were synthesized. The structures of all novel complexes were characterized by 1H NMR, 13C NMR, FT-IR spectroscopy and elemental anal. techniques. These palladium(II)-NHC complexes were tested as efficient catalysts in the direct C-H bond activation of benzoxazole and benzothiazole with aryl bromides in the presence of 1 mol% catalyst loading at 150 掳C for 4 h. Under the given conditions, various aryl bromides were successfully applied as the arylating reagents to achieve the 2-arylbenzoxazoles and 2-arylbenzothiazoles in acceptable to high yields. In the experiment, the researchers used many compounds, for example, 2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3Computed Properties of C14H11NS).

2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3) belongs to thiazole derivatives. The higher aromaticity of thiazole is due to delocalization of a lone pair of sulfur electrons across the ring, which is evidenced by chemical shifts of ring hydrogen at 未 7.27 and 8.77 ppm (C2 and C4), indicating diamagnetic ring current. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Computed Properties of C14H11NS

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Bathula, Surendra Bose et al. published their research in Asian Journal of Chemistry in 2018 | CAS: 16112-21-3

2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3) belongs to thiazole derivatives. The thiazole ring is notable as a component of the vitamin thiamine (B1). Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Synthetic Route of C14H11NS

Chitosan-SO3H: a green approach to 2-aryl/heteroaryl benzothiazoles under solvent-free conditions at room temperature was written by Bathula, Surendra Bose;Khagga, Mukkanti;Venkatasubramanian, Hariharakrishnan. And the article was included in Asian Journal of Chemistry in 2018.Synthetic Route of C14H11NS This article mentions the following:

An efficient green protocol was developed for the synthesis of 2-aryl/heteroaryl benzothiazoles by intramol. cyclocondensation of 2-mercaptoaniline with aryl/heteroaryl aldehydes using chitosan-SO3H as an efficient biocompatible and reusable heterogenous solid acid catalyst in presence of air under solvent free conditions at room temperature In the experiment, the researchers used many compounds, for example, 2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3Synthetic Route of C14H11NS).

2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3) belongs to thiazole derivatives. The thiazole ring is notable as a component of the vitamin thiamine (B1). Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Synthetic Route of C14H11NS

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Khalili, Dariush et al. published their research in Applied Organometallic Chemistry in 2018 | CAS: 16112-21-3

2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3) belongs to thiazole derivatives. The higher aromaticity of thiazole is due to delocalization of a lone pair of sulfur electrons across the ring, which is evidenced by chemical shifts of ring hydrogen at 未 7.27 and 8.77 ppm (C2 and C4), indicating diamagnetic ring current. Thiazole is a versatile building block for the construction and lead generation of new drug discoveries. Numerous diazole-based compounds are in clinical use as anticancer, antileukemic, antiinflammatory, antiviral, antifungal, antirheumatic, immunomodulator, and antiparasitic agents.Recommanded Product: 2-(4-Methylphenyl)benzothiazole

2-Arylation/alkylation of benzothiazoles using superparamagnetic graphene oxide-Fe3O4 hybrid material as a heterogeneous catalyst with diisopropyl azodicarboxylate (DIAD) as an oxidant was written by Khalili, Dariush;Etemadi-Davan, Elham;Banazadeh, Ali Reza. And the article was included in Applied Organometallic Chemistry in 2018.Recommanded Product: 2-(4-Methylphenyl)benzothiazole This article mentions the following:

In this report, we introduced Graphene oxide-iron oxide (GO-Fe3O4) nanocomposites as a heterogeneous catalyst for arylation/alkylation of benzothiazoles with aldehydes and benzylic alcs. in the presence of diisopropyl azodicarboxylate (DIAD) as an oxidant which exclusively produced 2-aryl (alkyl)-1H-benzothizoles in moderate to excellent yields. The absence of precious metals and toxic solvent, easy product isolation, and recyclability of the GO-Fe3O4 with no loss of activity are notable advantages of this method. In the experiment, the researchers used many compounds, for example, 2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3Recommanded Product: 2-(4-Methylphenyl)benzothiazole).

2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3) belongs to thiazole derivatives. The higher aromaticity of thiazole is due to delocalization of a lone pair of sulfur electrons across the ring, which is evidenced by chemical shifts of ring hydrogen at 未 7.27 and 8.77 ppm (C2 and C4), indicating diamagnetic ring current. Thiazole is a versatile building block for the construction and lead generation of new drug discoveries. Numerous diazole-based compounds are in clinical use as anticancer, antileukemic, antiinflammatory, antiviral, antifungal, antirheumatic, immunomodulator, and antiparasitic agents.Recommanded Product: 2-(4-Methylphenyl)benzothiazole

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Kaloglu, Murat et al. published their research in Chinese Journal of Chemistry in 2018 | CAS: 16112-21-3

2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3) belongs to thiazole derivatives. The higher aromaticity of thiazole is due to delocalization of a lone pair of sulfur electrons across the ring, which is evidenced by chemical shifts of ring hydrogen at δ 7.27 and 8.77 ppm (C2 and C4), indicating diamagnetic ring current. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Computed Properties of C14H11NS

Direct C-H Bond Activation of Benzoxazole and Benzothiazole with Aryl Bromides Catalyzed by Palladium(II)-N-heterocyclic Carbene Complexes was written by Kaloglu, Murat;Kaloglur, Nazan;Oezdemir, Ismail. And the article was included in Chinese Journal of Chemistry in 2018.Computed Properties of C14H11NS This article mentions the following:

Herein, a series of novel palladium(II)-NHC complexes (NHC=N-heterocyclic carbene) were synthesized. The structures of all novel complexes were characterized by 1H NMR, 13C NMR, FT-IR spectroscopy and elemental anal. techniques. These palladium(II)-NHC complexes were tested as efficient catalysts in the direct C-H bond activation of benzoxazole and benzothiazole with aryl bromides in the presence of 1 mol% catalyst loading at 150 °C for 4 h. Under the given conditions, various aryl bromides were successfully applied as the arylating reagents to achieve the 2-arylbenzoxazoles and 2-arylbenzothiazoles in acceptable to high yields. In the experiment, the researchers used many compounds, for example, 2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3Computed Properties of C14H11NS).

2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3) belongs to thiazole derivatives. The higher aromaticity of thiazole is due to delocalization of a lone pair of sulfur electrons across the ring, which is evidenced by chemical shifts of ring hydrogen at δ 7.27 and 8.77 ppm (C2 and C4), indicating diamagnetic ring current. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Computed Properties of C14H11NS

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Bathula, Surendra Bose et al. published their research in Asian Journal of Chemistry in 2018 | CAS: 16112-21-3

2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3) belongs to thiazole derivatives. The thiazole ring is notable as a component of the vitamin thiamine (B1). Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Synthetic Route of C14H11NS

Chitosan-SO3H: a green approach to 2-aryl/heteroaryl benzothiazoles under solvent-free conditions at room temperature was written by Bathula, Surendra Bose;Khagga, Mukkanti;Venkatasubramanian, Hariharakrishnan. And the article was included in Asian Journal of Chemistry in 2018.Synthetic Route of C14H11NS This article mentions the following:

An efficient green protocol was developed for the synthesis of 2-aryl/heteroaryl benzothiazoles by intramol. cyclocondensation of 2-mercaptoaniline with aryl/heteroaryl aldehydes using chitosan-SO3H as an efficient biocompatible and reusable heterogenous solid acid catalyst in presence of air under solvent free conditions at room temperature In the experiment, the researchers used many compounds, for example, 2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3Synthetic Route of C14H11NS).

2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3) belongs to thiazole derivatives. The thiazole ring is notable as a component of the vitamin thiamine (B1). Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Synthetic Route of C14H11NS

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Khalili, Dariush et al. published their research in Applied Organometallic Chemistry in 2018 | CAS: 16112-21-3

2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3) belongs to thiazole derivatives. The higher aromaticity of thiazole is due to delocalization of a lone pair of sulfur electrons across the ring, which is evidenced by chemical shifts of ring hydrogen at δ 7.27 and 8.77 ppm (C2 and C4), indicating diamagnetic ring current. Thiazole is a versatile building block for the construction and lead generation of new drug discoveries. Numerous diazole-based compounds are in clinical use as anticancer, antileukemic, antiinflammatory, antiviral, antifungal, antirheumatic, immunomodulator, and antiparasitic agents.Recommanded Product: 2-(4-Methylphenyl)benzothiazole

2-Arylation/alkylation of benzothiazoles using superparamagnetic graphene oxide-Fe3O4 hybrid material as a heterogeneous catalyst with diisopropyl azodicarboxylate (DIAD) as an oxidant was written by Khalili, Dariush;Etemadi-Davan, Elham;Banazadeh, Ali Reza. And the article was included in Applied Organometallic Chemistry in 2018.Recommanded Product: 2-(4-Methylphenyl)benzothiazole This article mentions the following:

In this report, we introduced Graphene oxide-iron oxide (GO-Fe3O4) nanocomposites as a heterogeneous catalyst for arylation/alkylation of benzothiazoles with aldehydes and benzylic alcs. in the presence of diisopropyl azodicarboxylate (DIAD) as an oxidant which exclusively produced 2-aryl (alkyl)-1H-benzothizoles in moderate to excellent yields. The absence of precious metals and toxic solvent, easy product isolation, and recyclability of the GO-Fe3O4 with no loss of activity are notable advantages of this method. In the experiment, the researchers used many compounds, for example, 2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3Recommanded Product: 2-(4-Methylphenyl)benzothiazole).

2-(4-Methylphenyl)benzothiazole (cas: 16112-21-3) belongs to thiazole derivatives. The higher aromaticity of thiazole is due to delocalization of a lone pair of sulfur electrons across the ring, which is evidenced by chemical shifts of ring hydrogen at δ 7.27 and 8.77 ppm (C2 and C4), indicating diamagnetic ring current. Thiazole is a versatile building block for the construction and lead generation of new drug discoveries. Numerous diazole-based compounds are in clinical use as anticancer, antileukemic, antiinflammatory, antiviral, antifungal, antirheumatic, immunomodulator, and antiparasitic agents.Recommanded Product: 2-(4-Methylphenyl)benzothiazole

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica