Xi, Yue et al. published their research in Toxicology and Applied Pharmacology in 2018 | CAS: 63208-82-2

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazole rings are planar and aromatic. Thiazoles are characterized by larger pi-electron delocalization than the corresponding oxazoles and have therefore greater aromaticity. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Recommanded Product: 63208-82-2

Triptolide induces p53-dependent cardiotoxicity through mitochondrial membrane permeabilization in cardiomyocytes was written by Xi, Yue;Wang, Wenwen;Wang, Li;Pan, Ji;Cheng, Yisen;Shen, Feihai;Huang, Zhiying. And the article was included in Toxicology and Applied Pharmacology in 2018.Recommanded Product: 63208-82-2 The following contents are mentioned in the article:

Triptolide (TP), a major active component of Tripterygium wilfordii Hook f., is widely used in the treatment of inflammation and autoimmune disorders. Its clin. application is limited by severe adverse effects, especially cardiotoxicity. Accumulative evidences indicate that TP induces DNA damage by inhibiting RNA polymerase. Considering the relationship among DNA damage, p53, and the role of p53 in mitochondria-dependent apoptosis, we speculate that TP-induced cardiotoxicity results from p53 activation. In this study, the role of p53 in TP-induced cardiotoxicity was investigated in H9c2 cells, primary cardiomyocytes, and C57BL/6 genetic background p53-/- mice. p53 protein level was elevated by TP in vitro and in acute heart injury models. With TP administration, p53 deficiency prevented heart histol. injury and decreased serum cardiac troponin I (cTn-I) and apoptotic proteins. Mechanistically, immunoblotting and immunofluorescence staining identified that TP-induced toxicity is dependent on p53 nuclear translocation and transactivation of Bcl2 family genes, leading to mitochondrial outer membrane permeabilization (MOMP) and mitochondria dysfunction. Consistently, p53 antagonist PFTα counteracted TP-induced p53 overexpression and regulation of Bcl2 family transcription, which improved mitochondrial membrane integrity and prevented apoptosis. These results suggest that TP-induced cardiotoxicity is p53-dependent by promoting Bax-induced mitochondria-mediated apoptosis. This study involved multiple reactions and reactants, such as 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2Recommanded Product: 63208-82-2).

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazole rings are planar and aromatic. Thiazoles are characterized by larger pi-electron delocalization than the corresponding oxazoles and have therefore greater aromaticity. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Recommanded Product: 63208-82-2

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Kageyama, Masaaki et al. published their research in PLoS One in 2019 | CAS: 63208-82-2

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. The thiazole ring is notable as a component of the vitamin thiamine (B1). Thiazole is a versatile building block for the construction and lead generation of new drug discoveries. Numerous diazole-based compounds are in clinical use as anticancer, antileukemic, antiinflammatory, antiviral, antifungal, antirheumatic, immunomodulator, and antiparasitic agents.Related Products of 63208-82-2

Chemical proteasome inhibition as a novel animal model of inner retinal degeneration in rats was written by Kageyama, Masaaki;Ota, Takashi;Sasaoka, Masaaki;Katsuta, Osamu;Shinomiya, Katsuhiko. And the article was included in PLoS One in 2019.Related Products of 63208-82-2 The following contents are mentioned in the article:

Chem. proteasome inhibition has been a valuable animal model of neurodegeneration to uncover roles for the ubiquitin-proteasome system in the central nervous system. However, little is known about the effects of chem. proteasome inhibitors on retinal integrity. Therefore, we characterized the effects of structurally different chem. proteasome inhibitors on the retinal morphol. and the mechanisms of their action in the normal adult rat eyes. Intravitreal injection of MG-262 and other proteasome inhibitors led to inner retinal degeneration. MG-262-induced inner retinal degeneration was accompanied by reduced proteasome activity, increased poly-ubiquitinated protein levels, and increased pos. immunostaining of ubiquitin, 20S proteasome subunit and GADD153/CHOP in the retina. Its retinal degenerative effect was also associated with reduced retinal neurofilament light chain gene expression, reflecting retinal ganglion cell death. MG-262-induced neurofilament light chain downregulation was largely resistant to pharmacol. modulation including endoplasmic reticulum stress, apoptosis or MAP kinase inhibitors. Thus, this study provides further evidence of roles for the ubiquitin-proteasome system in the maintenance of the retinal structural integrity. Chem. proteasome inhibition may be used as a novel animal model of inner retinal degeneration, including retinal ganglion cell loss, which warrants further anal. of the mol. mechanisms underlying its retinal degenerative effect. This study involved multiple reactions and reactants, such as 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2Related Products of 63208-82-2).

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. The thiazole ring is notable as a component of the vitamin thiamine (B1). Thiazole is a versatile building block for the construction and lead generation of new drug discoveries. Numerous diazole-based compounds are in clinical use as anticancer, antileukemic, antiinflammatory, antiviral, antifungal, antirheumatic, immunomodulator, and antiparasitic agents.Related Products of 63208-82-2

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Qin, Lin et al. published their research in CCS Chemistry in 2022 | CAS: 38215-36-0

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. Thiazole rings are planar and aromatic. Thiazoles are characterized by larger pi-electron delocalization than the corresponding oxazoles and have therefore greater aromaticity. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Formula: C20H18N2O2S

Efficient photogeneration of hydrogen boosted by long-lived dye-modified Ir(III) photosensitizers and polyoxometalate catalyst was written by Qin, Lin;Zhao, Chongyang;Yao, Liao-Yuan;Dou, Hongbin;Zhang, Mo;Xie, Jing;Weng, Tsu-Chien;Lv, Hongjin;Yang, Guo-Yu.. And the article was included in CCS Chemistry in 2022.Formula: C20H18N2O2S The following contents are mentioned in the article:

Developing efficient catalysts and photosensitizers is crucial for the construction of effective photocatalytic H2-evolving systems. Here, we report the facile preparation of Coumarin-modified Ir(III) complexes (PS-2 and PS-3) and their utilization as chromophores to drive favorable photocatalytic H2 evolution using Ni-substituted polyoxometalate (Ni3PW10) catalyst and triethanolamine (TEOA) as an electron donor. Compared with the com. available unmodified Ir(III) complex (PS-1), both PS-2 and PS-3 displayed intensive absorption in the range of 400-550 nm with εmax of 110,620 and 91,430 M-1 cm-1, resp. Varying the substitutes on the bipyridine ligand affected their physicochem. properties and the corresponding photocatalytic activity dramatically. Under photocatalytic conditions, the quantity of H2 mols. generated by PS-2- and PS-3-containing systems were 13.1 and 2.1 times, resp., that of the PS-1-containing system. When PS-2 was used as a photosensitizer, the highest turnover number (TON) of 19,739 was obtained vs. Ni3PW10 catalyst. Various spectroscopic and computational studies have revealed that factors such as strong and broad visible-light-absorbing ability, long-lived triplet state, suitable redox potential, opposed by using polyoxometalate (POM) catalyst, and large HOMO (HOMO)-LUMO (LUMO) gap of PS-2 attributed to drastically enhanced photocatalytic activity. This study involved multiple reactions and reactants, such as 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0Formula: C20H18N2O2S).

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. Thiazole rings are planar and aromatic. Thiazoles are characterized by larger pi-electron delocalization than the corresponding oxazoles and have therefore greater aromaticity. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Formula: C20H18N2O2S

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Yang, Eunhye et al. published their research in Food Hydrocolloids in 2022 | CAS: 38215-36-0

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. The higher aromaticity of thiazole is due to delocalization of a lone pair of sulfur electrons across the ring, which is evidenced by chemical shifts of ring hydrogen at δ 7.27 and 8.77 ppm (C2 and C4), indicating diamagnetic ring current. Various laboratory methods exist for the organic synthesis of thiazoles. Prominent is the Hantzsch thiazole synthesis is a reaction between haloketones and thioamides.Safety of 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one

Stimuli-responsive polymer-complexed liposome nanocarrier provides controlled release of biomolecules was written by Yang, Eunhye;Jung, Ho-Sup;Chang, Pahn-Shick. And the article was included in Food Hydrocolloids in 2022.Safety of 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one The following contents are mentioned in the article:

Smart nanocarriers have recently attracted attention for their effective delivery of biomols. to the intestine without degradation in the oral delivery field. In this study, we prepared a stimulus-responsive polymer complex containing liposomal nanocarriers, termed capsosomes, and examined their multi-level release properties in the oral delivery of hydrophilic mols. The capsosomes were constructed as a trilaurin-based solid lipid nanoparticle (SLN) assembly coated with chitosan (CSLNs), with liposomal subcompartments. We investigated the pH sensitivity and behavior of capsosomes in vitro under simulated gastrointestinal (GI) conditions. Pos. charged CSLNs with neg. charged liposomal subcompartments were complexed by electrostatic forces, and their thermodn. characteristics were examined using isothermal titration calorimetry. The optimized formulation was a 1.6 M ratio of liposomes to CSLNs, yielding phys. stable capsosomes. The complexed liposomes were released from capsosomes at pH 7.0. We compared the structural integrity and retention times of free liposomes and capsosomes using an in vitro digestion model. The capsosomes showed improved stability and prolonged retention time under small intestinal conditions and bypassed the GI tract. Approx. 87% of the complexed liposomes were released and transferred to the small intestinal membrane. These results demonstrate the potential application of pH-sensitive capsosomes for the oral delivery of food nutraceuticals. This study involved multiple reactions and reactants, such as 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0Safety of 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one).

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. The higher aromaticity of thiazole is due to delocalization of a lone pair of sulfur electrons across the ring, which is evidenced by chemical shifts of ring hydrogen at δ 7.27 and 8.77 ppm (C2 and C4), indicating diamagnetic ring current. Various laboratory methods exist for the organic synthesis of thiazoles. Prominent is the Hantzsch thiazole synthesis is a reaction between haloketones and thioamides.Safety of 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Abrantes, Aline B. de P. et al. published their research in Photochemistry and Photobiology in 2019 | CAS: 63208-82-2

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazole is a five-membered, unsaturated, planar, π-excessive heteroaromatic containing one sulfur atom and one pyridine-type nitrogen atom at position 3 of the cyclic ring system.Various laboratory methods exist for the organic synthesis of thiazoles. For example, 2,4-dimethylthiazole is synthesized from thioacetamide and chloroacetone.Recommanded Product: 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide

p53-Dependent and p53-Independent Responses of Cells Challenged by Photosensitization was written by Abrantes, Aline B. de P.;Dias, Gustavo C.;Souza-Pinto, Nadja C.;Baptista, Mauricio S.. And the article was included in Photochemistry and Photobiology in 2019.Recommanded Product: 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide The following contents are mentioned in the article:

The p53 protein exerts fundamental roles in cell responses to a variety of stress stimuli. It has clear roles in controlling cell cycle, triggering apoptosis, activating autophagy and modulating DNA damage response. Little is known about the role of p53 in autophagy-associated cell death, which can be induced by photoactivation of photosensitizers within cells. The photosensitizer 1,9-di-Me methylene blue (DMMB) within nanomolar concentration regimes has specific intracellular targets (mitochondria and lysosomes), photoinducing a typical scenario of cell death with autophagy. Importantly, in consequence of its subcellular localization, photoactive DMMB induces selective damage to mitochondrial DNA, saving nuclear DNA. By challenging cells having different p53 protein levels, we investigated whether p53 modulates DMMB/light-induced phototoxicity and cell cycle dynamics. Cells lacking p53 activity were slightly more resistant to photoactivated DMMB, which was correlated with a smaller sub-G1 population, indicative of a lower level of apoptosis. DMMB photosensitization seems to induce mostly autophagy-associated cell death and S-phase cell cycle arrest with replication stress. Remarkably, these responses were independent on the p53 status, indicating that p53 is not involved in either process. Despite describing some p53-related responses in cells challenged by photosensitization, our results also provide novel information on the consequences of DMMB phototoxicity. This study involved multiple reactions and reactants, such as 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2Recommanded Product: 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide).

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazole is a five-membered, unsaturated, planar, π-excessive heteroaromatic containing one sulfur atom and one pyridine-type nitrogen atom at position 3 of the cyclic ring system.Various laboratory methods exist for the organic synthesis of thiazoles. For example, 2,4-dimethylthiazole is synthesized from thioacetamide and chloroacetone.Recommanded Product: 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Yi, Shengfu et al. published their research in AAPS PharmSciTech in 2021 | CAS: 38215-36-0

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. The thiazole ring has been identified as a central feature of numerous natural products, perhaps the most famous example of which is epothilone. There are numerous natural products that possess a thiazole ring with broad pharmacological activities. Thiamine, also known as vitamin B1, possesses a thiazole ring linked with 2-methylpyrimidine-4-amine as hydrochloride salt.Safety of 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one

Preparation, Characterization, and In Vitro Pharmacodynamics and Pharmacokinetics Evaluation of PEGylated Urolithin A Liposomes was written by Yi, Shengfu;Zhang, Cong;Hu, Junjie;Meng, Yan;Chen, Liang;Yu, Huifan;Li, Shan;Wang, Guihong;Zheng, Guohua;Qiu, Zhenpeng. And the article was included in AAPS PharmSciTech in 2021.Safety of 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one The following contents are mentioned in the article:

Urolithin A (Uro-A), a metabolite of ellagitannins in mammals’ intestinal tract, displays broad biol. properties in preclin. models, including anti-oxidant, anti-inflammatory, and anti-tumor effects. Our purpose was to develop a delivery system to improve the bioavailability and anti-tumor efficacy of Uro-A. To achieve this goal, urolithin A-loaded PEGylated liposomes (Uro-A-PEG-LPs) were prepared for the first time and its physicochem. properties and anti-tumor efficacy in vitro were evaluated. The morphol. of Uro-A-PEG-LPs displayed a uniform sphere under transmission electron microscope. The particle size, polydispersity index, zeta potential, and encapsulation efficiency of Uro-A-PEG-LPs were determined Moreover, Uro-A-PEG-LPs possessed higher stability and could be stably stored at 4°C for a long time. In vitro release characteristics indicated that Uro-A-PEG-LPs possessed superior sustained release properties. The results of confocal laser scanning microscopy experiment showed that the coumarin 6-loaded PEGylated liposomes (C6-PEG-LPs) have superior cellular uptake than that of conventional liposomes. In addition, in vitro tests demonstrated that Uro-A-PEG-LPs elevated cytotoxicity and pro-apoptotic effect in human hepatoma cells comparing with free Uro-A. Furthermore, the results of pharmacokinetic experiments showed that the t1/2, AUC0-t, and MRT0-t of Uro-A-PEG-LPs increased to 4.58-fold, 2.33-fold, and 2.43-fold than those of free Uro-A solution, resp. This study involved multiple reactions and reactants, such as 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0Safety of 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one).

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. The thiazole ring has been identified as a central feature of numerous natural products, perhaps the most famous example of which is epothilone. There are numerous natural products that possess a thiazole ring with broad pharmacological activities. Thiamine, also known as vitamin B1, possesses a thiazole ring linked with 2-methylpyrimidine-4-amine as hydrochloride salt.Safety of 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Zager, Richard A. et al. published their research in American Journal of Physiology in 2019 | CAS: 63208-82-2

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. The thiazole ring has been identified as a central feature of numerous natural products, perhaps the most famous example of which is epothilone. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Reference of 63208-82-2

Acute kidney injury induces dramatic p21 upregulation via a novel, glucocorticoid-activated, pathway was written by Zager, Richard A.;Johnson, Ali C. M.. And the article was included in American Journal of Physiology in 2019.Reference of 63208-82-2 The following contents are mentioned in the article:

A proposed mechanism is oxidant stress-induced activation of p53, the dominant p21 transcription factor. Glycerol-induced rhabdomyolysis induces profound renal oxidant stress. Hence, we studied this AKI model to determine whether p53 activation corresponds with p21 gene induction and/or whether alternative mechanism(s) might be involved. CD-1 mice were subjected to glycerol-induced AKI. After 4 or 18 h, plasma, urinary, and renal cortical p21 protein and mRNA levels were assessed. Renal p53 activation was gauged by measurement of both total and activated (Ser15-phosphorylated) p53 and p53 mRNA levels. Glycerol evoked acute, progressive increases in renal cortical p21 mRNA and protein levels. Corresponding plasma (~25-fold) and urinary (~75-fold) p21 elevations were also observed Renal cortical ratio of total to phosphorylated (Ser15) p53 rose three- to fourfold. However, the p53 inhibitor pifithrin-a failed to block glycerol-induced p21 gene induction, suggesting that an alternative p21 activator might also be at play. To this end, it was established that glycerol-induced AKI 1) dramatically increased plasma (~5-fold) and urinary (~75-fold) cortisol levels, 2) the glucocorticoid receptor antagonist mifepristone blocked glycerol-induced p21 mRNA and protein accumulation, and 3) dexamethasone or cortisol injections markedly increased p21 protein and mRNA in both normal and glycerol-treated mice, although no discernible p53 protein or mRNA increases were observed This study involved multiple reactions and reactants, such as 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2Reference of 63208-82-2).

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. The thiazole ring has been identified as a central feature of numerous natural products, perhaps the most famous example of which is epothilone. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Reference of 63208-82-2

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Peng, Tingting et al. published their research in Acta Pharmaceutica Sinica B in 2021 | CAS: 38215-36-0

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. Thiazoles are a class of five-membered rings containing nitrogen and sulfur with excellent antitumor, antiviral and antibiotic activities. The nitrogen in thiazole is sp2 hybridized and the lone pair of electrons localized on the nitrogen is less reactive due to increased aromatic character and decreased basicity. It is protonated and alkylated/acylated at nitrogen forming hydrochloride and quaternary thiazolium salt.Quality Control of 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one

TPGS/hyaluronic acid dual-functionalized PLGA nanoparticles delivered through dissolving microneedles for markedly improved chemo-photothermal combined therapy of superficial tumor was written by Peng, Tingting;Huang, Yao;Feng, Xiaoqian;Zhu, Chune;Yin, Shi;Wang, Xinyi;Bai, Xuequn;Pan, Xin;Wu, Chuanbin. And the article was included in Acta Pharmaceutica Sinica B in 2021.Quality Control of 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one The following contents are mentioned in the article:

Nanoparticles (NPs) have shown potential in cancer therapy, while a single administration conferring a satisfactory outcome is still unavailable. To address this issue, the dissolving microneedles (DMNs) were developed to locally deliver functionalized NPs with combined chemotherapy and photothermal therapy (PTT). α-Tocopheryl polyethylene glycol succinate (TPGS)/hyaluronic acid (HA) dual-functionalized PLGA NPs (HD10 NPs) were fabricated to co-load paclitaxel and indocyanine green. HD10 NPs significantly enhanced the cytotoxicity of low-dose paclitaxel because of active and mitochondrial targeting by HA and TPGS, resp. PTT could further sensitize tumor cells toward chemotherapy by promoting apoptosis into the advanced period, highly activating caspase 3 enzyme, and significantly reducing the expression of survivin and MMP-9 proteins. Further, the anti-tumor effects of HD10 NPs delivered through different administration routes were conducted on the 4T1 tumor-bearing mice. After a single administration, HD10 NPs delivered with DMNs showed the best anti-tumor effect when giving chemotherapy alone. As expected, the anti-tumor effect was profoundly enhanced after combined therapy, and complete tumor ablation was achieved in the mice treated with DMNs and intra-tumor injection. Moreover, DMNs showed better safety due to moderate hyperthermia. Therefore, the DMNs along with combined chemo-photothermal therapy provide a viable treatment option for superficial tumors. This study involved multiple reactions and reactants, such as 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0Quality Control of 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one).

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. Thiazoles are a class of five-membered rings containing nitrogen and sulfur with excellent antitumor, antiviral and antibiotic activities. The nitrogen in thiazole is sp2 hybridized and the lone pair of electrons localized on the nitrogen is less reactive due to increased aromatic character and decreased basicity. It is protonated and alkylated/acylated at nitrogen forming hydrochloride and quaternary thiazolium salt.Quality Control of 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Pan, Jianqing et al. published their research in Bioscience Reports in 2019 | CAS: 63208-82-2

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazoles frequently appear in peptide studies. Thiazoles can also be used as protected formyl groups, which can be released in later stages of complex natural product synthesis.Various laboratory methods exist for the organic synthesis of thiazoles. For example, 2,4-dimethylthiazole is synthesized from thioacetamide and chloroacetone.Safety of 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide

Ginkgetin attenuates cerebral ischemia-reperfusion induced autophagy and cell death via modulation of the NF-κB/p53 signaling pathway was written by Pan, Jianqing;Li, Xiang;Guo, Fei;Yang, Zhigang;Zhang, Lingling;Yang, Chunshui. And the article was included in Bioscience Reports in 2019.Safety of 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide The following contents are mentioned in the article:

Cerebral ischemia-reperfusion (I/R) injury is the key to fatality in cerebrovascular accident, hence further endeavor is warranted to delineate the mechanism underlying its lethal aggravation procedure. In the present study, we aimed to elucidate the anti-autophagy and anti-apoptosis effects of ginkgetin via nuclear factor κ (NF-κ)/p53 pathway in cerebral I/R rats. Rats were administrated 2-h occlusion of right middle cerebral artery before the 24-h reperfusion followed. There were three doses of ginkgetin (25, 50, 100 mg/kg) given i.p. (i.p.) after the 2-h ischemia, and Pifithrin-a (PFT- α, p53 inhibitor), SN50 (NF-κ inhibitor) and 3-methyladenine (3-MA, autophagy inhibitor) was administered 20 min before the ischemia, resp. The neurol. deficits decreased significantly with the administration of ginkgetin. The concentrations of microtubule-associated protein 1 light chain 3-II and p53 were significantly decreased by PFT- α, 3-MA and ginkgetin. The concentrations of Beclin 1, damage-regulated autophagy modulator, cathepsin B and cathepsin D were significantly decreased due to the administration of PFT- α, ginkgetin and SN50. Furthermore, the concentrations of Bax and p53-upregulated modulator of apoptosis were significantly decreased with that of Bcl-2 being significantly increased by administration of SN50, PFT- α and ginkgetin. Ginkgetin can alleviate cerebral ischemia/reperfusion induced autophagy and apoptosis by inhibiting the NF-κ/p53 signaling pathway. This study involved multiple reactions and reactants, such as 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2Safety of 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide).

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazoles frequently appear in peptide studies. Thiazoles can also be used as protected formyl groups, which can be released in later stages of complex natural product synthesis.Various laboratory methods exist for the organic synthesis of thiazoles. For example, 2,4-dimethylthiazole is synthesized from thioacetamide and chloroacetone.Safety of 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Dalal, Sancharika et al. published their research in Dyes and Pigments in 2021 | CAS: 38215-36-0

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. Thiazoles in peptides or their ability to bind proteins, DNA and RNA has led to many synthetic studies and new applications. There are numerous natural products that possess a thiazole ring with broad pharmacological activities. Thiamine, also known as vitamin B1, possesses a thiazole ring linked with 2-methylpyrimidine-4-amine as hydrochloride salt.Application In Synthesis of 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one

Diverse interactions of aggregated insulin with selected coumarin dyes: Time dependent fluorogenicity, simulation studies and comparison with thioflavin T was written by Dalal, Sancharika;Das, Bratin Kumar;Saini, Meenaxi;Chakraborty, Debashree;Sadhu, Kalyan K.. And the article was included in Dyes and Pigments in 2021.Application In Synthesis of 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one The following contents are mentioned in the article:

The authors have compared neutral coumarin based known com. available probes C6, C7 and C545T for fluorogenic response from the aggregated insulin. The immediate fluorogenic responses were comparatively poor from all the three probes with respect to the previously reported response from thioflavin T (ThT) in the presence of aggregated insulin. C6 among the three neutral coumarin derivative showed a significant steady increase of fluorescence intensity with time up to 6 h before reaching the saturation limit. Similar time dependent fluorogenic experiment with C7, C545T and ThT showed comparatively fast saturation within few minutes to 2 h. The mol. docking and simulation studies showed that these neutral probes could be stabilized in the aggregated form of the insulin predominantly by noncovalent weak interactions such as hydrogen bonding, π-π and cation-π interactions. The probability distributions of the dihedral angles between two heterocyclic parts in C6 showed maximum probability of occurrence at 0° and 180°. These probability distributions of the dihedral angles between two heterocyclic parts within all the four fluorophores provided the justification of selective time dependent fluorescence enhancement from C6 in presence of insulin aggregate. The overall fluorogenic enhancement from C6 was comparable to the fluorogenic response from ThT and theor. study confirmed distinctly different origin of this associated slow time dependent fluorogenic response. This study involved multiple reactions and reactants, such as 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0Application In Synthesis of 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one).

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. Thiazoles in peptides or their ability to bind proteins, DNA and RNA has led to many synthetic studies and new applications. There are numerous natural products that possess a thiazole ring with broad pharmacological activities. Thiamine, also known as vitamin B1, possesses a thiazole ring linked with 2-methylpyrimidine-4-amine as hydrochloride salt.Application In Synthesis of 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica