Price, J. et al. published their research in Chemical Science in 2021 | CAS: 38215-36-0

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. Thiazole rings are planar and aromatic. Thiazoles are characterized by larger pi-electron delocalization than the corresponding oxazoles and have therefore greater aromaticity. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Category: thiazole

Shedding light on predicting and controlling emission chromaticity in multicomponent photoluminescent systems was written by Price, J.;Balonova, B.;Blight, B. A.;Eisler, S.. And the article was included in Chemical Science in 2021.Category: thiazole The following contents are mentioned in the article:

Predictable color tuning in multicomponent photoluminescent (PL) systems is achieved using mixtures of simultaneously emitting organic mols. By mitigating the potential for energy transfer through the control of concentration, the resulting emission chromaticity of five dichromic PL systems is approximated as a linear combination of the emitting components and their corresponding brightness (χi, φi, and Iex,i). Despite being limited to dilute solutions (10-6 M), color tuning within these systems was controlled by (1) varying the composition of the components and (2) exploiting the differences in the components’ excitation intensities at common wavelengths. Using this approach, white light emission (WLE) was realized using a pre-determined mixture of red, green, and blue emitting organic mols. Based on these results, materials and devices with built-in or programmable emission color can be achieved, including highly sought-after WLE. This study involved multiple reactions and reactants, such as 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0Category: thiazole).

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. Thiazole rings are planar and aromatic. Thiazoles are characterized by larger pi-electron delocalization than the corresponding oxazoles and have therefore greater aromaticity. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Category: thiazole

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Loureiro, Joana A. et al. published their research in Journal of Chemical Education in 2021 | CAS: 38215-36-0

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. The higher aromaticity of thiazole is due to delocalization of a lone pair of sulfur electrons across the ring, which is evidenced by chemical shifts of ring hydrogen at δ 7.27 and 8.77 ppm (C2 and C4), indicating diamagnetic ring current. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Computed Properties of C20H18N2O2S

Exploration of a simplified protocol for solid lipid nanoparticles production and characterization was written by Loureiro, Joana A.;Pereira, Maria C.. And the article was included in Journal of Chemical Education in 2021.Computed Properties of C20H18N2O2S The following contents are mentioned in the article:

Solid Lipid Nanoparticles (SLNs) are exciting nanoparticles used for transport therapeutic drugs into the organism. In this laboratory work, a simple experiment is performed to introduce master students into the field of nanotechnol., here applied to health including the applications in healthcare/pharmaceutical and cosmetic industry. This work demonstrates the advantages of SLNs as a vehicle to deliver/transport hydrophobic mols. The experiments are designed to be accomplished in two parts, i.e. two practical classes of 120 min each. In the first part, students will produce SLNs using homogenization followed by the ultrasonication method. In the second part, the SLNs will be characterized through their hydrodynamic size, polydispersity index, zeta potential and microscopically observed using a fluorescence microscope. Their encapsulation efficiency (EE) and loading capacity (LC) will be calculated This laboratory work could be performed in groups of two students. This study involved multiple reactions and reactants, such as 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0Computed Properties of C20H18N2O2S).

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. The higher aromaticity of thiazole is due to delocalization of a lone pair of sulfur electrons across the ring, which is evidenced by chemical shifts of ring hydrogen at δ 7.27 and 8.77 ppm (C2 and C4), indicating diamagnetic ring current. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Computed Properties of C20H18N2O2S

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Barili, Valeria et al. published their research in Nature Communications in 2020 | CAS: 63208-82-2

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazole is a five-membered, unsaturated, planar, π-excessive heteroaromatic containing one sulfur atom and one pyridine-type nitrogen atom at position 3 of the cyclic ring system.Various laboratory methods exist for the organic synthesis of thiazoles. For example, 2,4-dimethylthiazole is synthesized from thioacetamide and chloroacetone.Formula: C16H19BrN2OS

Targeting p53 and histone methyltransferases restores exhausted CD8+ T cells in HCV infection was written by Barili, Valeria;Fisicaro, Paola;Montanini, Barbara;Acerbi, Greta;Filippi, Anita;Forleo, Giovanna;Romualdi, Chiara;Ferracin, Manuela;Guerrieri, Francesca;Pedrazzi, Giuseppe;Boni, Carolina;Rossi, Marzia;Vecchi, Andrea;Penna, Amalia;Zecca, Alessandra;Mori, Cristina;Orlandini, Alessandra;Negri, Elisa;Pesci, Marco;Massari, Marco;Missale, Gabriele;Levrero, Massimo;Ottonello, Simone;Ferrari, Carlo. And the article was included in Nature Communications in 2020.Formula: C16H19BrN2OS The following contents are mentioned in the article:

Abstract: Hepatitis C virus infection (HCV) represents a unique model to characterize, from early to late stages of infection, the T cell differentiation process leading to exhaustion of human CD8+ T cells. Here we show that in early HCV infection, exhaustion-committed virus-specific CD8+ T cells display a marked upregulation of transcription associated with impairedglycolytic and mitochondrial functions, that are linked to enhanced ataxia-telangiectasia mutated (ATM) and p53 signaling. After evolution to chronic infection, exhaustion of HCV-specific T cell responses is instead characterized by a broad gene downregulation associated with a wide metabolic and anti-viral function impairment, which can be rescued by histone methyltransferase inhibitors. These results have implications not only for treatment of HCV-pos. patients not responding to last-generation antivirals, but also for other chronic pathologies associated with T cell dysfunction, including cancer. This study involved multiple reactions and reactants, such as 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2Formula: C16H19BrN2OS).

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazole is a five-membered, unsaturated, planar, π-excessive heteroaromatic containing one sulfur atom and one pyridine-type nitrogen atom at position 3 of the cyclic ring system.Various laboratory methods exist for the organic synthesis of thiazoles. For example, 2,4-dimethylthiazole is synthesized from thioacetamide and chloroacetone.Formula: C16H19BrN2OS

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Kuang, Xiao et al. published their research in Colloids and Surfaces, B: Biointerfaces in 2021 | CAS: 38215-36-0

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. The higher aromaticity of thiazole is due to delocalization of a lone pair of sulfur electrons across the ring, which is evidenced by chemical shifts of ring hydrogen at δ 7.27 and 8.77 ppm (C2 and C4), indicating diamagnetic ring current. Thiazole sulfonation occurs only under forcing conditions: the action of oleum at 250 °C for 3 hours in the presence of mercury(II) sulfate leads to 65% formation of 5-thiazole sulfonic acid.COA of Formula: C20H18N2O2S

Disulfide bond based cascade reduction-responsive Pt(IV) nanoassemblies for improved anti-tumor efficiency and biosafety was written by Kuang, Xiao;Chi, Dongxu;Li, Jinbo;Guo, Chunlin;Yang, Yinxian;Zhou, Shuang;Luo, Cong;Liu, Hongzhuo;He, Zhonggui;Wang, Yongjun. And the article was included in Colloids and Surfaces, B: Biointerfaces in 2021.COA of Formula: C20H18N2O2S The following contents are mentioned in the article:

The platinum-based drugs prevail in the therapy of malignant tumors treatment. However, their clin. outcomes have been heavily restricted by severe systemic toxicities. To ensure biosafety and efficiency, herein, we constructed a disulfide bond inserted Pt(IV) self-assembled nanoplatform that is selectively activated by rich glutathione (GSH) in tumor site. Disulfide bond was introduced into the conjugates of oxaliplatin (IV) and oleic acid (OA) which conferred cascade reduction-responsiveness to nanoassemblies. Disulfide bond cleavage and reduction of Pt(IV) center occur sequentially as a cascade process. In comparison to oxaliplatin solution, Pt(IV) nanoparticles (NPs) achieved prolonged blood circulation and higher maximum tolerated doses. Furthermore, Oxa(IV)-SS-OA prodrug NPs exhibited potent anti-tumor efficiency against 4T1 cells and low toxicities in other normal tissues, which offers a promising nano-platform for potential clin. application. This study involved multiple reactions and reactants, such as 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0COA of Formula: C20H18N2O2S).

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. The higher aromaticity of thiazole is due to delocalization of a lone pair of sulfur electrons across the ring, which is evidenced by chemical shifts of ring hydrogen at δ 7.27 and 8.77 ppm (C2 and C4), indicating diamagnetic ring current. Thiazole sulfonation occurs only under forcing conditions: the action of oleum at 250 °C for 3 hours in the presence of mercury(II) sulfate leads to 65% formation of 5-thiazole sulfonic acid.COA of Formula: C20H18N2O2S

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Zhang, Yang et al. published their research in Materials Today Communications in 2022 | CAS: 38215-36-0

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. Thiazole rings are planar and aromatic. Thiazoles are characterized by larger pi-electron delocalization than the corresponding oxazoles and have therefore greater aromaticity. Thiazole sulfonation occurs only under forcing conditions: the action of oleum at 250 °C for 3 hours in the presence of mercury(II) sulfate leads to 65% formation of 5-thiazole sulfonic acid.Related Products of 38215-36-0

Molecular dynamics simulation of perforation of graphene under impact by fullerene projectiles was written by Zhang, Yang;Qiu, Yun;Niu, Fuzhou;Ademiloye, A. S.. And the article was included in Materials Today Communications in 2022.Related Products of 38215-36-0 The following contents are mentioned in the article:

In this paper, mol. dynamics (MD) simulations are employed to study the perforation of graphene under impact by fullerenes of various sizes. The buckling characteristics of fullerenes after impact are classified and discussed. The relative state of C180 projectile and graphene under impact at different velocities is also investigated. We observed that the C180 projectile rebounds at low velocity (V < 4.25 km/s), sticks to graphene at high velocity (4.25 km/s ≤V ≤ 4.75 km/s), and perforates the graphene at higher velocity (V ≥ 4.75 km/s). It is found that the buckled cap of large-size fullerene formed after impact can better absorb kinetic energy. In addition, different crack modes of graphene after perforation were investigated. The effect of fullerene projectile size and initial velocity on ballistic limit velocity was also clarified. This study provides new implications for the application of large-size fullerenes as impact shields. This study involved multiple reactions and reactants, such as 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0Related Products of 38215-36-0).

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. Thiazole rings are planar and aromatic. Thiazoles are characterized by larger pi-electron delocalization than the corresponding oxazoles and have therefore greater aromaticity. Thiazole sulfonation occurs only under forcing conditions: the action of oleum at 250 °C for 3 hours in the presence of mercury(II) sulfate leads to 65% formation of 5-thiazole sulfonic acid.Related Products of 38215-36-0

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Whaley-Mayda, Lukas et al. published their research in Journal of Chemical Physics in 2022 | CAS: 38215-36-0

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. The higher aromaticity of thiazole is due to delocalization of a lone pair of sulfur electrons across the ring, which is evidenced by chemical shifts of ring hydrogen at δ 7.27 and 8.77 ppm (C2 and C4), indicating diamagnetic ring current. The nitrogen in thiazole is sp2 hybridized and the lone pair of electrons localized on the nitrogen is less reactive due to increased aromatic character and decreased basicity. It is protonated and alkylated/acylated at nitrogen forming hydrochloride and quaternary thiazolium salt.Electric Literature of C20H18N2O2S

Resonance conditions, detection quality, and single-molecule sensitivity in fluorescence-encoded infrared vibrational spectroscopy was written by Whaley-Mayda, Lukas;Guha, Abhirup;Tokmakoff, Andrei. And the article was included in Journal of Chemical Physics in 2022.Electric Literature of C20H18N2O2S The following contents are mentioned in the article:

Fluorescence-encoded IR (FEIR) spectroscopy is a vibrational spectroscopy technique that has recently demonstrated the capability of single-mol. sensitivity in solution without near-field enhancement. This work explores the practical exptl. factors that are required for successful FEIR measurements in both the single-mol. and bulk regimes. We investigate the role of resonance conditions by performing measurements on a series of coumarin fluorophores of varying electronic transition frequencies. To analyze variations in signal strength and signal to background between mols., we introduce an FEIR brightness metric that normalizes out measurement-specific parameters. We find that the effect of the resonance condition on FEIR brightness can be reasonably well described by the electronic absorption spectrum. We discuss strategies for optimizing detection quality and sensitivity in bulk and single-mol. experiments (c) 2022 American Institute of Physics. This study involved multiple reactions and reactants, such as 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0Electric Literature of C20H18N2O2S).

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. The higher aromaticity of thiazole is due to delocalization of a lone pair of sulfur electrons across the ring, which is evidenced by chemical shifts of ring hydrogen at δ 7.27 and 8.77 ppm (C2 and C4), indicating diamagnetic ring current. The nitrogen in thiazole is sp2 hybridized and the lone pair of electrons localized on the nitrogen is less reactive due to increased aromatic character and decreased basicity. It is protonated and alkylated/acylated at nitrogen forming hydrochloride and quaternary thiazolium salt.Electric Literature of C20H18N2O2S

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Hwang, Sunsook et al. published their research in Cell Death Discovery in 2021 | CAS: 63208-82-2

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazoles frequently appear in peptide studies. Thiazoles can also be used as protected formyl groups, which can be released in later stages of complex natural product synthesis. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Electric Literature of C16H19BrN2OS

Mitochondrial glutamine metabolism regulates sensitivity of cancer cells after chemotherapy via amphiregulin was written by Hwang, Sunsook;Yang, Seungyeon;Kim, Minjoong;Hong, Youlim;Kim, Byungjoo;Lee, Eun Kyung;Jeong, Seung Min. And the article was included in Cell Death Discovery in 2021.Electric Literature of C16H19BrN2OS The following contents are mentioned in the article:

The DNA damage response is essential for sustaining genomic stability and preventing tumorigenesis. However, the fundamental question about the cellular metabolic response to DNA damage remains largely unknown, impeding the development of metabolic interventions that might prevent or treat cancer. Recently, it has been reported that there is a link between cell metabolism and DNA damage response, by repression of glutamine (Gln) entry into mitochondria to support cell cycle arrest and DNA repair. Here, we show that mitochondrial Gln metabolism is a crucial regulator of DNA damage-induced cell death. Mechanistically, inhibition of glutaminase (GLS), the first enzyme for Gln anaplerosis, sensitizes cancer cells to DNA damage by inducing amphiregulin (AREG) that promotes apoptotic cell death. GLS inhibition increases reactive oxygen species production, leading to transcriptional activation of AREG through Max-like protein X (MLX) transcription factor. Moreover, suppression of mitochondrial Gln metabolism results in markedly increased cell death after chemotherapy in vitro and in vivo. The essentiality of this mol. pathway in DNA damage-induced cell death may provide novel metabolic interventions for cancer therapy. This study involved multiple reactions and reactants, such as 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2Electric Literature of C16H19BrN2OS).

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazoles frequently appear in peptide studies. Thiazoles can also be used as protected formyl groups, which can be released in later stages of complex natural product synthesis. Electrophilic attack at nitrogen depends on the presence of electron density at nitrogen as well as the position and nature of substituent linked to the thiazole ring.Electric Literature of C16H19BrN2OS

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Tian, Zonghua et al. published their research in International Journal of Pharmaceutics in 2022 | CAS: 38215-36-0

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. Thiazoles are a class of five-membered rings containing nitrogen and sulfur with excellent antitumor, antiviral and antibiotic activities. The pyridine-type nitrogen in the thiazole ring deactivates the ring for electrophilic substitution reactions, which is further reduced in acid due to protonation of the thiazole ring.Related Products of 38215-36-0

Nanocrystals with different stabilizers overcome the mucus and epithelial barriers for oral delivery of multicomponent Bufadienolides was written by Tian, Zonghua;Zhao, Yue;Mai, Yaping;Qiao, Fangxia;Guo, Jueshuo;Dong, Luning;Niu, Yang;Gou, Guojing;Yang, Jianhong. And the article was included in International Journal of Pharmaceutics in 2022.Related Products of 38215-36-0 The following contents are mentioned in the article:

Using nanocrystals (NCs) technol. may be a promising drug delivery strategy for oral administration of multicomponent anticancer drugs. However, the intestinal epithelium and the mucus layer on the intestine extremely limited drug transport and absorption by orally. In this study, we selected multicomponent in artificial compound Bufadienolides (BU) with broad spectrum antitumor activity as the model drug to prepare BU NCs with different stabilizers by wet grinding, and explored the efficiency of penetrating through the mucus layer and transporting intestinal epithelial cells in vitro and ex vivo. Results revealed that BU NCs can dramatically improve dissolution behavior synergistically and the efficiency of mucus permeation. Besides, we found that BU NCs with different stabilizers enhanced cellular uptake, which was mainly attributed to increasing or changing the endocytosis pathway and plasma membrane/Endoplasmic reticulum (ER) pathway involved in the transmembrane transport of NCs. Furthermore, BU NCs could definitely improve intestinal absorption efficiency and change the absorption site of BU ex vivo. This multi-angle exploration will provide reference for the development of BU oral delivery formulations. This study involved multiple reactions and reactants, such as 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0Related Products of 38215-36-0).

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. Thiazoles are a class of five-membered rings containing nitrogen and sulfur with excellent antitumor, antiviral and antibiotic activities. The pyridine-type nitrogen in the thiazole ring deactivates the ring for electrophilic substitution reactions, which is further reduced in acid due to protonation of the thiazole ring.Related Products of 38215-36-0

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Fazel, Mohamadreza et al. published their research in ACS Photonics in 2022 | CAS: 38215-36-0

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. Thiazole is a five-membered, unsaturated, planar, π-excessive heteroaromatic containing one sulfur atom and one pyridine-type nitrogen atom at position 3 of the cyclic ring system. Various laboratory methods exist for the organic synthesis of thiazoles. Prominent is the Hantzsch thiazole synthesis is a reaction between haloketones and thioamides.Electric Literature of C20H18N2O2S

High Resolution Fluorescence Lifetime Maps from Minimal Photon Counts was written by Fazel, Mohamadreza;Jazani, Sina;Scipioni, Lorenzo;Vallmitjana, Alexander;Gratton, Enrico;Digman, Michelle A.;Presse, Steve. And the article was included in ACS Photonics in 2022.Electric Literature of C20H18N2O2S The following contents are mentioned in the article:

Fluorescence lifetime imaging microscopy (FLIM) may reveal subcellular spatial lifetime maps of key mol. species. Yet, such a quant. picture of life necessarily demands high photon budgets at every pixel under the current anal. paradigm, thereby increasing acquisition time and photodamage to the sample. Motivated by recent developments in computational statistics, we provide a direct means to update our knowledge of the lifetime maps of species of different lifetimes from direct photon arrivals, while accounting for exptl. features such as arbitrary forms of the instrument response function (IRF) and exploiting information from empty laser pulses not resulting in photon detection. Our ability to construct lifetime maps holds for arbitrary lifetimes, from short lifetimes (comparable to the IRF) to lifetimes exceeding interpulse times. As our method is highly data efficient, for the same amount of data normally used to determine lifetimes and photon ratios, working within the Bayesian paradigm, we report direct blind unmixing of lifetimes with subnanosecond resolution and subpixel spatial resolution using standard raster scan FLIM images. We demonstrate our method using a wide range of simulated and exptl. data. This study involved multiple reactions and reactants, such as 3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0Electric Literature of C20H18N2O2S).

3-(Benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (cas: 38215-36-0) belongs to thiazole derivatives. Thiazole is a five-membered, unsaturated, planar, π-excessive heteroaromatic containing one sulfur atom and one pyridine-type nitrogen atom at position 3 of the cyclic ring system. Various laboratory methods exist for the organic synthesis of thiazoles. Prominent is the Hantzsch thiazole synthesis is a reaction between haloketones and thioamides.Electric Literature of C20H18N2O2S

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Pesi, Rossana et al. published their research in International Journal of Molecular Sciences in 2021 | CAS: 63208-82-2

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazoles are a class of five-membered rings containing nitrogen and sulfur with excellent antitumor, antiviral and antibiotic activities. There are numerous natural products that possess a thiazole ring with broad pharmacological activities. Thiamine, also known as vitamin B1, possesses a thiazole ring linked with 2-methylpyrimidine-4-amine as hydrochloride salt.Synthetic Route of C16H19BrN2OS

Cytosolic 5′-Nucleotidase II Silencing in Lung Tumor Cells Regulates Metabolism through Activation of the p53/AMPK Signaling Pathway was written by Pesi, Rossana;Allegrini, Simone;Garcia-Gil, Mercedes;Piazza, Lucia;Moschini, Roberta;Jordheim, Lars Petter;Camici, Marcella;Tozzi, Maria Grazia. And the article was included in International Journal of Molecular Sciences in 2021.Synthetic Route of C16H19BrN2OS The following contents are mentioned in the article:

Cytosolic 5′-nucleotidase II (cN-II) is an allosteric catabolic enzyme that hydrolyzes IMP, GMP, and AMP. The enzyme can assume at least two different structures, being the more active conformation stabilized by ATP and the less active by inorganic phosphate. Therefore, the variation in ATP concentration can control both structure and activity of cN-II. In this paper, using a capillary electrophoresis technique, we demonstrated that a partial silencing of cN-II in a pulmonary carcinoma cell line (NCI-H292) is accompanied by a decrease in adenylate pool, without affecting the energy charge. We also found that cN-II silencing decreased proliferation and increased oxidative metabolism, as indicated by the decreased production of lactate. These effects, as demonstrated by Western blotting, appear to be mediated by both p53 and AMP-activated protein kinase, as most of them are prevented by pifithrin-α, a known p53 inhibitor. These results are in line with our previous observations of a shift towards a more oxidative and less proliferative phenotype of tumoral cells with a low expression of cN-II, thus supporting the search for specific inhibitors of this enzyme as a therapeutic tool for the treatment of tumors. This study involved multiple reactions and reactants, such as 2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2Synthetic Route of C16H19BrN2OS).

2-(2-Imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone Hydrobromide (cas: 63208-82-2) belongs to thiazole derivatives. Thiazoles are a class of five-membered rings containing nitrogen and sulfur with excellent antitumor, antiviral and antibiotic activities. There are numerous natural products that possess a thiazole ring with broad pharmacological activities. Thiamine, also known as vitamin B1, possesses a thiazole ring linked with 2-methylpyrimidine-4-amine as hydrochloride salt.Synthetic Route of C16H19BrN2OS

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica