Sartori, Luca’s team published research in Journal of Medicinal Chemistry in 2017-03-09 | 1003-32-3

Journal of Medicinal Chemistry published new progress about Antitumor agents. 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Name: Thiazole-5-carboxyaldehyde.

Sartori, Luca; Mercurio, Ciro; Amigoni, Federica; Cappa, Anna; Faga, Giovanni; Fattori, Raimondo; Legnaghi, Elena; Ciossani, Giuseppe; Mattevi, Andrea; Meroni, Giuseppe; Moretti, Loris; Cecatiello, Valentina; Pasqualato, Sebastiano; Romussi, Alessia; Thaler, Florian; Trifiro, Paolo; Villa, Manuela; Vultaggio, Stefania; Botrugno, Oronza A.; Dessanti, Paola; Minucci, Saverio; Zagarri, Elisa; Carettoni, Daniele; Iuzzolino, Lucia; Varasi, Mario; Vianello, Paola published the artcile< Thieno[3,2-b]pyrrole-5-carboxamides as New Reversible Inhibitors of Histone Lysine Demethylase KDM1A/LSD1. Part 1: High-Throughput Screening and Preliminary Exploration>, Name: Thiazole-5-carboxyaldehyde, the main research area is thienopyrrolecarboxamide preparation histone lysine demethylase KDM1A inhibitor screening.

Lysine specific demethylase 1 KDM1A (LSD1) is one regulator of histone methylation and it is increasingly recognized as a potential therapeutic target in oncol. The authors report on a high-throughput screening campaign performed on KDM1A/CoREST, using a time resolved fluorescence resonance energy transfer (TR-FRET) technol., to identify reversible inhibitors. The screening led to 115 hits for which the authors determined biochem. IC50, thus identifying 4 chem. series. After data anal., the authors have prioritized the chem. series of N-phenyl-4H-thieno[3,2-b]pyrrole-5-carboxamide for which the authors obtained x-ray structures of the most potent hit (compound 19, IC50 = 2.9 μM) in complex with the enzyme. Initial expansion of this chem. class, both modifying core structure and decorating benzamide moiety, was directed towards the definition of the moieties responsible for the interaction with the enzyme. Preliminary optimization brought to compound 90 (4-methyl-N-[3-[[4-(4-piperidyloxy)phenoxy]methyl]phenyl]- thieno[3,2-b]pyrrole-5-carboxamide) which inhibited the enzyme with a submicromolar IC50 (0.162 μM), capable to inhibit the target in cells.

Journal of Medicinal Chemistry published new progress about Antitumor agents. 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Name: Thiazole-5-carboxyaldehyde.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Moszczynski-Petkowski, Rafal’s team published research in European Journal of Medicinal Chemistry in 2018-07-15 | 1003-32-3

European Journal of Medicinal Chemistry published new progress about Benzimidazoles Role: PAC (Pharmacological Activity), RCT (Reactant), SPN (Synthetic Preparation), THU (Therapeutic Use), BIOL (Biological Study), RACT (Reactant or Reagent), PREP (Preparation), USES (Uses). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Quality Control of 1003-32-3.

Moszczynski-Petkowski, Rafal; Majer, Jakub; Borkowska, Malgorzata; Bojarski, Lukasz; Janowska, Sylwia; Matloka, Mikolaj; Stefaniak, Filip; Smuga, Damian; Bazydlo, Katarzyna; Dubiel, Krzysztof; Wieczorek, Maciej published the artcile< Synthesis and characterization of novel classes of PDE10A inhibitors - 1H-1,3-benzodiazoles and imidazo[1,2-a]pyrimidines>, Quality Control of 1003-32-3, the main research area is triazolopyridine pyrazolopyridine benzodiazole imidazopyrimidine preparation PDE10A enzyme inhibitor; 1H-1,3-benzodiazoles; Imidazo[1,2-a]pyrimidines; PDE10A.

New compounds containing [1,2,4]triazolo[1,5-a]pyridine I (R = 5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl, 4,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl, 4-methylquinazolin-2-yl; R1 = Ph, pyrimidin-2-yl), pyrazolo[1,5-a]pyridine II (R = 5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl, 4,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl; R1 = phenyl), 1H-1,3-benzodiazole III (R1 = 2-methoxyphenyl, pyridin-2-yl, 1,3-oxazol-4-yl, etc.; R2 = H, Me) and imidazo[1,2-a]pyrimidine IV backbones were designed and synthesized for PDE10A interaction. Among these compounds, 1H-1,3-benzodiazoles and imidazo[1,2-a]pyrimidines III and IV showed the highest affinity for PDE10A enzyme as well as good metabolic stability. Both classes of compounds were identified as selective and potent PDE10A enzyme inhibitors.

European Journal of Medicinal Chemistry published new progress about Benzimidazoles Role: PAC (Pharmacological Activity), RCT (Reactant), SPN (Synthetic Preparation), THU (Therapeutic Use), BIOL (Biological Study), RACT (Reactant or Reagent), PREP (Preparation), USES (Uses). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Quality Control of 1003-32-3.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Ospanov, Meirambek’s team published research in Molecules in 2022 | 1003-32-3

Molecules published new progress about Anti-neurodegenerative agents. 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Electric Literature of 1003-32-3.

Ospanov, Meirambek; Sulochana, Suresh P.; Paris, Jason J.; Rimoldi, John M.; Ashpole, Nicole; Walker, Larry; Ross, Samir A.; Shilabin, Abbas G.; Ibrahim, Mohamed A. published the artcile< Identification of an Orally Bioavailable, Brain-Penetrant Compound with Selectivity for the Cannabinoid Type 2 Receptor>, Electric Literature of 1003-32-3, the main research area is pyrrolobenzodiazepine preparation neuroinflammation cannabinoid receptor antineurodegenerative activity pharmacokinetic property; cannabinoid receptors CB1/CB2; central nervous system (CNS); neurodegenerative diseases; neuroinflammation; pharmacokinetics (PK); pyrrolobenzodiazepines; radioligand binding assay.

Modulation of the endocannabinoid system (ECS) is of great interest for its therapeutic relevance in several pathophysiol. processes. The CB2 subtype is largely localized to immune effectors, including microglia within the central nervous system, where it promotes anti-inflammation. Recently, a rational drug design toward precise modulation of the CB2 active site revealed the novelty of Pyrrolo[2,1-c][1,4]benzodiazepines tricyclic chemotype with a high conformational similarity in comparison to the existing leads. These compounds are structurally unique, confirming their chemotype novelty. In our continuing search for new chemotypes as selective CB2 regulatory mols., following SAR approaches, a total of 17 selected (S,E)-11-[2-(arylmethylene)hydrazono]-PBD analogs were synthesized and tested for their ability to bind to the CB1 and CB2 receptor orthosteric sites. A competitive [3H]CP-55,940 binding screen revealed five compounds that exhibited >60% displacement at 10 μM concentration Further concentration-response anal. revealed two compounds, 4k and 4q, as potent and selective CB2 ligands with sub-micromolar activities (Ki = 146 nM and 137 nM, resp.). In order to support the potential efficacy and safety of the analogs, the oral and i.v. pharmacokinetic properties of compound 4k were sought. Compound 4k was orally bioavailable, reaching maximum brain concentrations of 602 ± 162 ng/g (p.o.) with an elimination half-life of 22.9 ± 3.73 h. Whether administered via the oral or i.v. route, the elimination half-lives ranged between 9.3 and 16.7 h in the liver and kidneys. These compounds represent novel chemotypes, which can be further optimized for improved affinity and selectivity toward the CB2 receptor.

Molecules published new progress about Anti-neurodegenerative agents. 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Electric Literature of 1003-32-3.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Maruyama, Takahisa’s team published research in Bioorganic & Medicinal Chemistry in 2007-01-01 | 1003-32-3

Bioorganic & Medicinal Chemistry published new progress about Antibacterial agents. 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Formula: C4H3NOS.

Maruyama, Takahisa; Kano, Yuko; Yamamoto, Yasuo; Kurazono, Mizuyo; Iwamatsu, Katsuyoshi; Atsumi, Kunio; Shitara, Eiki published the artcile< Synthesis and SAR study of novel 7-(pyridinium-3-yl)-carbonyl imidazo[5,1-b]thiazol-2-yl carbapenems>, Formula: C4H3NOS, the main research area is imidazo thiazolyl carbapenem preparation antibacterial SAR.

A new series of 1β-Me carbapenems, possessing a 7-substituted imidazo[5,1-b]thiazol-2-yl group directly attached to the C-2 position of the carbapenem nucleus, was synthesized and evaluated for antibacterial activity. These compounds showed potent activities against Gram-pos. bacteria, in particular methicillin-resistant Staphylococcus aureus (MRSA) and penicillin-resistant Streptococcus pneumoniae (PRSP). They also exhibited potent activity against β-lactamase-neg. ampicillin-resistant Haemophilus influenzae (BLNAR).

Bioorganic & Medicinal Chemistry published new progress about Antibacterial agents. 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Formula: C4H3NOS.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Luescher, Michael U’s team published research in Angewandte Chemie, International Edition in 2015 | 1003-32-3

Angewandte Chemie, International Edition published new progress about Aromatic imines Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Reference of 1003-32-3.

Luescher, Michael U.; Bode, Jeffrey W. published the artcile< Catalytic Synthesis of N-Unprotected Piperazines, Morpholines, and Thiomorpholines from Aldehydes and SnAP Reagents>, Reference of 1003-32-3, the main research area is SnAP reagent aldehyde copper PhBox catalyst heterocyclization; piperazine morpholine thiomorpholine preparation; SnAP reagents; aldehydes; cross-coupling; homogeneous catalysis; nitrogen heterocycles.

Com. available SnAP (stannyl amine protocol) reagents allow the transformation of aldehydes and ketones into a variety of N-unprotected heterocycles, i.e. I. By identifying new ligands and reaction conditions, a robust catalytic variant that expands the substrate scope to previously inaccessible heteroaromatic substrates and new substitution patterns was realized. It also establishes the basis for a catalytic enantioselective process through the use of chiral ligands.

Angewandte Chemie, International Edition published new progress about Aromatic imines Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Reference of 1003-32-3.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Vilaboa, Nuria’s team published research in Nucleic Acids Research in 2017-05-15 | 324579-90-0

Nucleic Acids Research published new progress about Activating transcription factor 1 Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 324579-90-0 belongs to class thiazole, and the molecular formula is C6H8N2S, Recommanded Product: 4-Cyclopropylthiazol-2-amine.

Vilaboa, Nuria; Bore, Alba; Martin-Saavedra, Francisco; Bayford, Melanie; Winfield, Natalie; Firth-Clark, Stuart; Kirton, Stewart B.; Voellmy, Richard published the artcile< New inhibitor targeting human transcription factor HSF1: effects on the heat shock response and tumor cell survival>, Recommanded Product: 4-Cyclopropylthiazol-2-amine, the main research area is human transcription factor HSF1 inhibitor preparation heat shock antitumor.

Comparative modeling of the DNA-binding domain of human HSF1 facilitated the prediction of possible binding pockets for small mols. and definition of corresponding pharmacophores. In silico screening of a large library of lead-like compounds identified a set of compounds that satisfied the pharmacophoric criteria, a selection of which compounds was purchased to populate a biased sublibrary. A discriminating cell-based screening assay identified compound 001, which was subjected to systematic anal. of structure-activity relationships, resulting in the development of compound 115 (IHSF115). IHSF115 bound to an isolated HSF1 DNA binding domain fragment. The compound did not affect heat-induced oligomerization, nuclear localization and specific DNA binding but inhibited the transcriptional activity of human HSF1, interfering with the assembly of ATF1-containing transcription complexes. IHSF115 was employed to probe the human heat shock response at the transcriptome level. In contrast to earlier studies of differential regulation in HSF1-naive and -depleted cells, the authors’ results suggest that a large majority of heat-induced genes is pos. regulated by HSF1. That IHSF115 effectively countermanded repression in a significant fraction of heat-repressed genes suggests that repression of these genes is mediated by transcriptionally active HSF1. IHSF115 is cytotoxic for a variety of human cancer cell lines, multiple myeloma lines consistently exhibiting high sensitivity.

Nucleic Acids Research published new progress about Activating transcription factor 1 Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 324579-90-0 belongs to class thiazole, and the molecular formula is C6H8N2S, Recommanded Product: 4-Cyclopropylthiazol-2-amine.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Dessi, Alessio’s team published research in RSC Advances in 2014 | 1003-32-3

RSC Advances published new progress about Aliphatic aldehydes Role: RCT (Reactant), RACT (Reactant or Reagent). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Name: Thiazole-5-carboxyaldehyde.

Dessi, Alessio; Calamante, Massimo; Mordini, Alessandro; Zani, Lorenzo; Taddei, Maurizio; Reginato, Gianna published the artcile< Microwave-activated synthesis of thiazolo[5,4-d]thiazoles by a condensation/oxidation sequence>, Name: Thiazole-5-carboxyaldehyde, the main research area is thiazolothiazole microwave preparation condensation oxidation.

A microwave-assisted preparation of sym. thiazolo[5,4-d]thiazoles from the corresponding aldehydes is presented. The two-step reaction sequence comprises the condensation of aldehydes with dithiooxamide followed by oxidation/aromatization with 1,4-benzoquinone derivatives The new procedure provides the desired products in good yields and in most cases allows reduction of the excess of aldehyde employed in the process compared to previous methodologies. For the first time, application of the reaction both on aromatic and aliphatic aldehydes is demonstrated.

RSC Advances published new progress about Aliphatic aldehydes Role: RCT (Reactant), RACT (Reactant or Reagent). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Name: Thiazole-5-carboxyaldehyde.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Chadha, Ridhima’s team published research in Colloids and Surfaces, A: Physicochemical and Engineering Aspects in 2021-04-20 | 96-53-7

Colloids and Surfaces, A: Physicochemical and Engineering Aspects published new progress about Affinity. 96-53-7 belongs to class thiazole, and the molecular formula is C3H5NS2, Recommanded Product: 4,5-Dihydrothiazole-2-thiol.

Chadha, Ridhima; Das, Abhishek; Debnath, Anil K.; Kapoor, Sudhir; Maiti, Nandita published the artcile< 2-thiazoline-2-thiol functionalized gold nanoparticles for detection of heavy metals, Hg(II) and Pb(II) and probing their competitive surface reactivity: A colorimetric, surface enhanced Raman scattering (SERS) and x-ray photoelectron spectroscopic (XPS) study>, Recommanded Product: 4,5-Dihydrothiazole-2-thiol, the main research area is colorimetry SERS 2thiazoline2thiol gold nanoparticles heavy metals surface reactivity.

A novel 2-thiazoline-2-thiol functionalized gold (Au-TT) nanosensor was developed for the selective and sensitive detection of toxic heavy metal ions, Hg(II) and Pb(II) by colorimetry, and for studying its competitive surface reactivity using SERS and XPS. The detection mechanism and surface reactivity is based on competitive binding affinity of thiocarbonyl S or thiazoline ring N/S atom with the metal ions and the nanoparticles (NPs). Due to diff ;erences in the binding affinities of the metal ions towards the active binding sites of TT, addition of different metal ions resulted in variation of color and SERS spectral features. Of the various metal ions studied, viz. Cu(II), Cd(II), Co(II), Zn(II), Ni(II), Hg(II), Pb(II), Ca(II), Fe(II), Mn(II) and Sn(II), only Hg(II) and Pb(II) showed distinctive colorimetric and SERS spectral response that was quantified using XPS. This study, thus, realizes a selective and sensitive visual based nanosensor for Hg(II) and Pb(II) with limit of detection (LOD) of ∼ 0.1 ppm. SERS revealed the formation of Hg(TT)2 and Pb(TT)2 complexes on the Au NPs surface with the former remaining bonded to the NPs, resulting in enhanced Raman intensity for the 1026 cm-1 band, while the latter gets desorbed from the surface leading to reduced SERS intensity.

Colloids and Surfaces, A: Physicochemical and Engineering Aspects published new progress about Affinity. 96-53-7 belongs to class thiazole, and the molecular formula is C3H5NS2, Recommanded Product: 4,5-Dihydrothiazole-2-thiol.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Bedford, Simon T’s team published research in Bioorganic & Medicinal Chemistry Letters in 2009-10-15 | 1003-32-3

Bioorganic & Medicinal Chemistry Letters published new progress about Adenosine A2B receptors Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Electric Literature of 1003-32-3.

Bedford, Simon T.; Benwell, Karen R.; Brooks, Teresa; Chen, Ijen; Comer, Mike; Dugdale, Sarah; Haymes, Tim; Jordan, Allan M.; Kennett, Guy A.; Knight, Anthony R.; Klenke, Burkhard; LeStrat, Loic; Merrett, Angela; Misra, Anil; Lightowler, Sean; Padfield, Anthony; Poullennec, Karine; Reece, Mark; Simmonite, Heather; Wong, Melanie; Yule, Ian A. published the artcile< Discovery and optimization of potent and selective functional antagonists of the human adenosine A2B receptor>, Electric Literature of 1003-32-3, the main research area is thienopyrimidine aroyl carbamoyl alkylamino preparation antagonist human adenosine receptor.

The discovery of a novel class of antagonists of the human adenosine A2B receptor, thieno[3,2-d]pyrimidines I (R1 = Ph, 4-MeOC6H4, 2-thienyl, 5-methyl-2-thienyl, 2-thiazolyl, 4-pyridyl, MeNH, 1-pyrrolidinyl, etc.; R2 = H, Et, PhCH2, 3-pyridylmethyl, 3-pyridylcarbonyl, etc.; R3 = H, Cl, H2N, MeNH, EtNH, Me2N) is reported. This low mol. weight scaffold has been optimized to offer derivatives with potential utility for the alleviation of conditions associated with this receptor subtype, such as nociception, diabetes, asthma and COPD. Furthermore, preliminary pharmacokinetic anal. has revealed compounds with profiles suitable for either inhaled or systemic routes of administration.

Bioorganic & Medicinal Chemistry Letters published new progress about Adenosine A2B receptors Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Electric Literature of 1003-32-3.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Yang, Ping’s team published research in Journal of Molecular Structure in 2022-08-15 | 1003-32-3

Journal of Molecular Structure published new progress about Aldehydes Role: RCT (Reactant), RACT (Reactant or Reagent). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Recommanded Product: Thiazole-5-carboxyaldehyde.

Yang, Ping; Luo, Jia-Bao; Wang, Zi-Zhou; Zhang, Li-Lei; Xie, Xiao-Bao; Shi, Qing-Shan; Zhang, Xin-Guo published the artcile< Synthesis and in vitro antibacterial activity of N-acylarylhydrazone-ciprofloxacin hybrids as novel fluoroquinolone derivatives>, Recommanded Product: Thiazole-5-carboxyaldehyde, the main research area is acylarylhydrazone ciprofloxacin hybrid diastereoselective preparation mol docking antibacterial.

Twelve novel fluoroquinolone derivatives I [R = 3,4-di-HOC6H3, 2,3-di-FC6H3, 2,5-di-FC6H3, etc.] were rationally designed and synthesized by introducing N-acylarylhydrazone to the C-7 position of ciprofloxacin. Antibacterial evaluation revealed that compound I [R = (E)-2,6-di-FC6H3CH=CH] was over 4-folds more potent than ciprofloxacin against S. aureus, with a MIC value ≤0.125μg/mL. Compound I [R = (E)-4-BrC6H4CH=CH] showed activity against methicillin-resistant S. aureus (MRSA) with a MIC value of 32μg/mL. Time-killing assays showed that compound I [R = (E)-4-BrC6H4CH=CH] eradicated S. aureus in 4 h and E. coli in 2 h. Compound I [R = (E)-4-BrC6H4CH=CH] had a high affinity toward DNA topoisomerase IV, with a least binding energy of -9.9 kcal/mol, which was better than ciprofloxacin (-8.0 kcal/mol). The binding modes of compound I [R = (E)-4-BrC6H4CH=CH] to DNA topoisomerase IV differed from that of ciprofloxacin. Mol. dynamics simulation results support that the interaction between the receptor 3rae and the compound I [R = (E)-4-BrC6H4CH=CH] was stable. Besides, cytotoxicity and hemolysis assays demonstrated that compound I [R = (E)-4-BrC6H4CH=CH] and I [R = (E)-2,6-di-FC6H3CH=CH] had negligible risks of toxic effects.

Journal of Molecular Structure published new progress about Aldehydes Role: RCT (Reactant), RACT (Reactant or Reagent). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Recommanded Product: Thiazole-5-carboxyaldehyde.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica