Telegina, Lyudmila N’s team published research in ChemistrySelect in 2019 | 96-53-7

ChemistrySelectpublished new progress about Chelates Role: PEP (Physical, Engineering or Chemical Process), PRP (Properties), RCT (Reactant), SPN (Synthetic Preparation), PROC (Process), RACT (Reactant or Reagent), PREP (Preparation). 96-53-7 belongs to class thiazole, and the molecular formula is C3H5NS2, Recommanded Product: 4,5-Dihydrothiazole-2-thiol.

Telegina, Lyudmila N.; Kelbysheva, Elena S.; Strelkova, Tatyana V.; Ezernitskaya, Mariam G.; Smol’yakov, Alexander F.; Borisov, Yurii A.; Loim, Nikolay M. published the artcile< Synthesis and Photochemical Study of Thiazolidine Derivatives of Cymantrene and the Corresponding Dicarbonyl Chelates>, Recommanded Product: 4,5-Dihydrothiazole-2-thiol, the main research area is cymantrenylmethylthio thiazole preparation reaction; thiazolidinethione cymantrenylmethylthio preparation reaction; chelated cymantrenylmethylthio thiazolidine preparation crystal mol structure; photochem thiazolidine derivative cymantrene dicarbonyl chelate.

Isomeric 4,5-dihydro-2-[(cymantrenylmethyl)thio]thiazole (1) and 3-(cymantrenylmethyl)-1,3-thioazolidine-2-thione (2) were synthesized and photochem. behavior and spectral characteristics of tricarbonyl and dicarbonyl complexes were studied. Irradiation of compounds 1 and 2 results in the formation of stable chelates due to coordination of manganese to the donor nitrogen and sulfur atoms of the thiazolidine substituent. Photolysis is accompanied with a color change and the corresponding changes in the UV/Vis spectra depending on the solvent used. In the presence of CO, the dicarbonyl chelates enter the dark reaction to give the parent tricarbonyl complexes thus forming intermol. photochromic systems. Photolysis of the dicarbonyl chelate 5 gives the isomeric chelate 6, which in the course of the dark isomerization transforms into complex 5. Chelates 5 and 6 form an intramol. photochromic pair.

ChemistrySelectpublished new progress about Chelates Role: PEP (Physical, Engineering or Chemical Process), PRP (Properties), RCT (Reactant), SPN (Synthetic Preparation), PROC (Process), RACT (Reactant or Reagent), PREP (Preparation). 96-53-7 belongs to class thiazole, and the molecular formula is C3H5NS2, Recommanded Product: 4,5-Dihydrothiazole-2-thiol.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Wu, Yue-Xiao’s team published research in European Journal of Organic Chemistry in 2021-11-22 | 96-53-7

European Journal of Organic Chemistrypublished new progress about Amines Role: RCT (Reactant), RACT (Reactant or Reagent). 96-53-7 belongs to class thiazole, and the molecular formula is C3H5NS2, Quality Control of 96-53-7.

Wu, Yue-Xiao; Peng, Kang; Hu, Zhi-Chao; Fan, Yong-Hao; Shi, Zhen; Hao, Er-Jun; Dong, Zhi-Bing published the artcile< Iodine-Mediated Cross-Dehydrogenative Coupling of Heterocyclic Thiols with Amines: An Easy and Practical Formation of S-N Bond>, Quality Control of 96-53-7, the main research area is amine heteroaryl thiol iodine promoter cross dehydrogenative coupling; heteroaryl sulfenamide preparation.

An efficient iodine-mediated construction of S-N bond was developed. Such a cross-dehydrogenative coupling of heterocyclic thiols with amines proceeded smoothly under metal-free and base-free conditions, and afforded a series of sulfenamides in good to excellent yields. The easily available substrates and convenient synthetic procedure illustrate potential synthetic value of this protocol for the preparation of sulfenamide related biol. or pharmaceutically active compounds

European Journal of Organic Chemistrypublished new progress about Amines Role: RCT (Reactant), RACT (Reactant or Reagent). 96-53-7 belongs to class thiazole, and the molecular formula is C3H5NS2, Quality Control of 96-53-7.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Sun, Wencheng’s team published research in Tetrahedron Letters in 2020-01-16 | 1003-32-3

Tetrahedron Letterspublished new progress about Aldehydes Role: RCT (Reactant), RACT (Reactant or Reagent). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Electric Literature of 1003-32-3.

Sun, Wencheng; Teng, Qiaoling; Cheng, Dongping; Li, Xiaonian; Xu, Xiaoliang published the artcile< The hydrodebromination of 1,1-dibromoalkenes via visible light catalysis>, Electric Literature of 1003-32-3, the main research area is dibromoalkene preparation iridium photocatalyst diastereoselective hydrodebromination green chem; bromoalkene preparation.

A hydrodebromination reaction of 1,1-dibromoalkenes was established via visible light catalysis. A variety of structurally different vinyl bromides were obtained in moderate to excellent yields.

Tetrahedron Letterspublished new progress about Aldehydes Role: RCT (Reactant), RACT (Reactant or Reagent). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Electric Literature of 1003-32-3.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Ostrovskii, Vladimir S’s team published research in Organic Letters in 2019-11-15 | 96-53-7

Organic Letterspublished new progress about Carboxylic acids Role: RCT (Reactant), RACT (Reactant or Reagent). 96-53-7 belongs to class thiazole, and the molecular formula is C3H5NS2, Safety of 4,5-Dihydrothiazole-2-thiol.

Ostrovskii, Vladimir S.; Beletskaya, Irina P.; Titanyuk, Igor D. published the artcile< Trifluoroacetaldehyde N-Tosylhydrazone as a Precursor of Trifluorodiazoethane in Reactions of Insertion into the Heteroatom-Hydrogen Bond>, Safety of 4,5-Dihydrothiazole-2-thiol, the main research area is trifluoroacetaldehyde tosylhydrazone trifluorodiazoethane insertion reaction copper catalyst.

Trifluorodiazoethane is a widely explored trifluoroethylating reagent, which is suitable for the preparation of a large number of fluorine-containing organic mols. Nevertheless, CF3CHN2 has some disadvantages, such as volatility, storage instability, toxicity, and explosiveness. Herein, the application of trifluoroacetaldehyde N-tosylhydrazone as a CF3CHN2 precursor capable of generating in situ trifluorodiazoethane under mild basic conditions is reported. Copper-catalyzed P-H, O-H, S-H, and C-H insertion reactions of trifluoroacetaldehyde N-tosylhydrazone revealed its wide applicability in the synthesis of trifluoroethyl-containing substances.

Organic Letterspublished new progress about Carboxylic acids Role: RCT (Reactant), RACT (Reactant or Reagent). 96-53-7 belongs to class thiazole, and the molecular formula is C3H5NS2, Safety of 4,5-Dihydrothiazole-2-thiol.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Tzani, Marina A’s team published research in Nanomaterials in 2020 | 1003-32-3

Nanomaterialspublished new progress about Aldehydes Role: RCT (Reactant), RACT (Reactant or Reagent). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Formula: C4H3NOS.

Tzani, Marina A.; Gabriel, Catherine; Lykakis, Ioannis N. published the artcile< Selective synthesis of benzimidazoles from o-phenylenediamine and aldehydes promoted by supported gold nanoparticles>, Formula: C4H3NOS, the main research area is benzimidazole preparation; phenylenediamine aldehyde gold nanoparticle supported titanium oxide catalyst; benzimidazoles; cyclization reaction; gold nanoparticles; heterogeneous catalysis; o-phenylenediamine; thiabendazole.

The catalytic efficacy of supported gold nanoparticles (AuNPs) towards the selective reaction between o-phenylenediamine and aldehydes that yielded 2-substituted benzimidazoles I [R = Ph, 4-HOC6H4, 2-furyl, etc.] was investigated. Among several supported gold nanoparticle platforms, the Au/TiO2 provided a series of 2-aryl and 2-alkyl substituted benzimidazoles at ambient conditions, in the absence of additives and in high yields, using the mixture CHCl3:MeOH in ratio 3:1 as the reaction solvent. Among the AuNPs catalysts used herein, the Au/TiO2 containing small-size nanoparticles was found to be the most active towards the present catalytic methodol. The Au/TiO2 could be recovered and reused at least five times without a significant loss of its catalytic efficacy. The present catalytic synthetic protocol applied to a broad substrate scope and represents an efficient method for the formation of a C-N bond under mild reaction conditions. Notably, this catalytic methodol. provided the regio-isomer of the anthelmintic drug, Thiabendazole, in a lab-scale showing its applicability in the efficient synthesis of such N-heterocyclic mols. at industrial levels.

Nanomaterialspublished new progress about Aldehydes Role: RCT (Reactant), RACT (Reactant or Reagent). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Formula: C4H3NOS.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Feng, Daijun’s team published research in Organic Letters in 2019-04-05 | 1003-32-3

Organic Letterspublished new progress about Aldol condensation. 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Product Details of C4H3NOS.

Feng, Daijun; Barton, George; Scott, Colleen N. published the artcile< Synthesis of 2,5-Dibutyl-3,6-dimethyl-1H,2H,4H,5H-pyrrolo[3,4-c]pyrrole-1,4-dione: A Diketopyrrolopyrrole Scaffold for the Formation of Alkenyldiketopyrrolopyrrole Compounds>, Product Details of C4H3NOS, the main research area is dibutyldimethylpyrrolopyrrole dione preparation diketopyrrolopyrrole scaffold; divinyl substituted diketopyrrolopyrrole carbon hydrogen functionalization.

This manuscript describes an unprecedented and efficient synthesis of a new DPP scaffold, 2,5-dibutyl-3,6-dimethyl-1H,2H,4H,5H-pyrrolo[3,4-c]pyrrole-1,4-dione (DMDPP), containing Me groups at the 3,6-positions as a precursor to preparing 3,6-divinyl-substituted DPP compounds Subsequently, following the synthesis of DMDPP, we performed an efficient and mild C-H functionalization of the Me groups with a variety of aromatic aldehydes to synthesize the first examples of 3,6-divinyl-substituted DPP compounds in moderate to good yields.

Organic Letterspublished new progress about Aldol condensation. 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Product Details of C4H3NOS.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Dessi, Alessio’s team published research in RSC Advances in 2014 | 1003-32-3

RSC Advancespublished new progress about Aliphatic aldehydes Role: RCT (Reactant), RACT (Reactant or Reagent). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Formula: C4H3NOS.

Dessi, Alessio; Calamante, Massimo; Mordini, Alessandro; Zani, Lorenzo; Taddei, Maurizio; Reginato, Gianna published the artcile< Microwave-activated synthesis of thiazolo[5,4-d]thiazoles by a condensation/oxidation sequence>, Formula: C4H3NOS, the main research area is thiazolothiazole microwave preparation condensation oxidation.

A microwave-assisted preparation of sym. thiazolo[5,4-d]thiazoles from the corresponding aldehydes is presented. The two-step reaction sequence comprises the condensation of aldehydes with dithiooxamide followed by oxidation/aromatization with 1,4-benzoquinone derivatives The new procedure provides the desired products in good yields and in most cases allows reduction of the excess of aldehyde employed in the process compared to previous methodologies. For the first time, application of the reaction both on aromatic and aliphatic aldehydes is demonstrated.

RSC Advancespublished new progress about Aliphatic aldehydes Role: RCT (Reactant), RACT (Reactant or Reagent). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Formula: C4H3NOS.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Ospanov, Meirambek’s team published research in Molecules in 2022 | 1003-32-3

Moleculespublished new progress about Anti-neurodegenerative agents. 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Application of C4H3NOS.

Ospanov, Meirambek; Sulochana, Suresh P.; Paris, Jason J.; Rimoldi, John M.; Ashpole, Nicole; Walker, Larry; Ross, Samir A.; Shilabin, Abbas G.; Ibrahim, Mohamed A. published the artcile< Identification of an Orally Bioavailable, Brain-Penetrant Compound with Selectivity for the Cannabinoid Type 2 Receptor>, Application of C4H3NOS, the main research area is pyrrolobenzodiazepine preparation neuroinflammation cannabinoid receptor antineurodegenerative activity pharmacokinetic property; cannabinoid receptors CB1/CB2; central nervous system (CNS); neurodegenerative diseases; neuroinflammation; pharmacokinetics (PK); pyrrolobenzodiazepines; radioligand binding assay.

Modulation of the endocannabinoid system (ECS) is of great interest for its therapeutic relevance in several pathophysiol. processes. The CB2 subtype is largely localized to immune effectors, including microglia within the central nervous system, where it promotes anti-inflammation. Recently, a rational drug design toward precise modulation of the CB2 active site revealed the novelty of Pyrrolo[2,1-c][1,4]benzodiazepines tricyclic chemotype with a high conformational similarity in comparison to the existing leads. These compounds are structurally unique, confirming their chemotype novelty. In our continuing search for new chemotypes as selective CB2 regulatory mols., following SAR approaches, a total of 17 selected (S,E)-11-[2-(arylmethylene)hydrazono]-PBD analogs were synthesized and tested for their ability to bind to the CB1 and CB2 receptor orthosteric sites. A competitive [3H]CP-55,940 binding screen revealed five compounds that exhibited >60% displacement at 10 μM concentration Further concentration-response anal. revealed two compounds, 4k and 4q, as potent and selective CB2 ligands with sub-micromolar activities (Ki = 146 nM and 137 nM, resp.). In order to support the potential efficacy and safety of the analogs, the oral and i.v. pharmacokinetic properties of compound 4k were sought. Compound 4k was orally bioavailable, reaching maximum brain concentrations of 602 ± 162 ng/g (p.o.) with an elimination half-life of 22.9 ± 3.73 h. Whether administered via the oral or i.v. route, the elimination half-lives ranged between 9.3 and 16.7 h in the liver and kidneys. These compounds represent novel chemotypes, which can be further optimized for improved affinity and selectivity toward the CB2 receptor.

Moleculespublished new progress about Anti-neurodegenerative agents. 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Application of C4H3NOS.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Rashmi, S V’s team published research in Synthetic Communications in 2012-02-01 | 1003-32-3

Synthetic Communicationspublished new progress about Aldehydes Role: RCT (Reactant), RACT (Reactant or Reagent). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Recommanded Product: Thiazole-5-carboxyaldehyde.

Rashmi, S. V.; Sandhya, N. C.; Raghava, B.; Kumara, M. N.; Mantelingu, K.; Rangappa, K. S. published the artcile< Trifluoroethanol as a metal-free, homogeneous, and recyclable medium for the efficient one-pot synthesis of dihydropyrimidones>, Recommanded Product: Thiazole-5-carboxyaldehyde, the main research area is dihydropyrimidone preparation; aldehyde ketoester urea multicomponent condensation trifluoroethanol catalyst.

Trifluoroethanol is an efficient and recyclable medium in promoting one-pot, three-component condensation reactions of β-ketoesters, aldehydes, and urea (or thiourea) to afford the corresponding dihydropyrimidones in good yields. This protocol does not require the use of an acid or base catalyst.

Synthetic Communicationspublished new progress about Aldehydes Role: RCT (Reactant), RACT (Reactant or Reagent). 1003-32-3 belongs to class thiazole, and the molecular formula is C4H3NOS, Recommanded Product: Thiazole-5-carboxyaldehyde.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Vilaboa, Nuria’s team published research in Nucleic Acids Research in 2017-05-15 | 324579-90-0

Nucleic Acids Researchpublished new progress about Activating transcription factor 1 Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 324579-90-0 belongs to class thiazole, and the molecular formula is C6H8N2S, Recommanded Product: 4-Cyclopropylthiazol-2-amine.

Vilaboa, Nuria; Bore, Alba; Martin-Saavedra, Francisco; Bayford, Melanie; Winfield, Natalie; Firth-Clark, Stuart; Kirton, Stewart B.; Voellmy, Richard published the artcile< New inhibitor targeting human transcription factor HSF1: effects on the heat shock response and tumor cell survival>, Recommanded Product: 4-Cyclopropylthiazol-2-amine, the main research area is human transcription factor HSF1 inhibitor preparation heat shock antitumor.

Comparative modeling of the DNA-binding domain of human HSF1 facilitated the prediction of possible binding pockets for small mols. and definition of corresponding pharmacophores. In silico screening of a large library of lead-like compounds identified a set of compounds that satisfied the pharmacophoric criteria, a selection of which compounds was purchased to populate a biased sublibrary. A discriminating cell-based screening assay identified compound 001, which was subjected to systematic anal. of structure-activity relationships, resulting in the development of compound 115 (IHSF115). IHSF115 bound to an isolated HSF1 DNA binding domain fragment. The compound did not affect heat-induced oligomerization, nuclear localization and specific DNA binding but inhibited the transcriptional activity of human HSF1, interfering with the assembly of ATF1-containing transcription complexes. IHSF115 was employed to probe the human heat shock response at the transcriptome level. In contrast to earlier studies of differential regulation in HSF1-naive and -depleted cells, the authors’ results suggest that a large majority of heat-induced genes is pos. regulated by HSF1. That IHSF115 effectively countermanded repression in a significant fraction of heat-repressed genes suggests that repression of these genes is mediated by transcriptionally active HSF1. IHSF115 is cytotoxic for a variety of human cancer cell lines, multiple myeloma lines consistently exhibiting high sensitivity.

Nucleic Acids Researchpublished new progress about Activating transcription factor 1 Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 324579-90-0 belongs to class thiazole, and the molecular formula is C6H8N2S, Recommanded Product: 4-Cyclopropylthiazol-2-amine.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica