Pena, Stella’s team published research in Tetrahedron Letters in 2013-05-29 | 96929-05-4

Tetrahedron Letters published new progress about Antimalarials. 96929-05-4 belongs to class thiazole, and the molecular formula is C12H18N2O4S, Recommanded Product: Ethyl 2-(((tert-butoxycarbonyl)amino)methyl)thiazole-4-carboxylate.

Pena, Stella; Scarone, Laura; Manta, Eduardo; Serra, Gloria published the artcile< First total synthesis of aerucyclamide B>, Recommanded Product: Ethyl 2-(((tert-butoxycarbonyl)amino)methyl)thiazole-4-carboxylate, the main research area is cyclic peptide aerucyclamide B total synthesis antimalarial agent fluorous; oxathiozole hydroxyamide cyclodehydration Deoxo Fluor peptide coupling fragment condensation; natural product Microcystis aeruginosa cyanobacteria.

The first total synthesis of the antimalarial aerucyclamide B has been achieved in 9% overall yield. Two thiazoles and a dipeptide were used to prepare two open precursors of cyclo-Gly-l-allo-Thr-l-Ile-Thz-d-allo-Ile-Thz. Cyclodehydration with Deoxo-Fluor of the β-hydroxyamide present in the macrocycle, rendered aerucyclamide B (67%) and an unexpected fluorous derivative (28%).

Tetrahedron Letters published new progress about Antimalarials. 96929-05-4 belongs to class thiazole, and the molecular formula is C12H18N2O4S, Recommanded Product: Ethyl 2-(((tert-butoxycarbonyl)amino)methyl)thiazole-4-carboxylate.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Stress, Cedric J’s team published research in Angewandte Chemie, International Edition in 2019 | 96929-05-4

Angewandte Chemie, International Edition published new progress about Combinatorial library (DNA-encoded). 96929-05-4 belongs to class thiazole, and the molecular formula is C12H18N2O4S, Application In Synthesis of 96929-05-4.

Stress, Cedric J.; Sauter, Basilius; Schneider, Lukas A.; Sharpe, Timothy; Gillingham, Dennis published the artcile< A DNA-Encoded Chemical Library Incorporating Elements of Natural Macrocycles>, Application In Synthesis of 96929-05-4, the main research area is DNA encoded library macrocycle compound; DNA chemistry; DNA-encoded libraries; Lipinski rules; chemical libraries; macrocycles.

Here the authors show a seven-step chem. synthesis of a DNA-encoded macrocycle library (DEML) on DNA. Inspired by polyketide and mixed peptide-polyketide natural products, the library was designed to incorporate rich backbone diversity. Achieving this diversity, however, comes at the cost of the custom synthesis of bifunctional building block libraries. This study outlines the importance of careful retrosynthetic design in DNA-encoded libraries, while revealing areas where new DNA synthetic methods are needed.

Angewandte Chemie, International Edition published new progress about Combinatorial library (DNA-encoded). 96929-05-4 belongs to class thiazole, and the molecular formula is C12H18N2O4S, Application In Synthesis of 96929-05-4.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Yu, Mohan’s team published research in Molecules in 2021 | 2591-17-5

Molecules published new progress about Annihilation radiation. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Electric Literature of 2591-17-5.

Yu, Mohan; Liu, Yajun published the artcile< A QM/MM Study on the Initiation Reaction of Firefly Bioluminescence-Enzymatic Oxidation of Luciferin>, Electric Literature of 2591-17-5, the main research area is luciferin bioluminescence enzymic oxidation quantum mol mechanic study; QM/MM; firefly bioluminescence; luciferin oxidation; mechanism; single electron transfer.

Among all bioluminescent organisms, the firefly is the most famous, with a high luminescent efficiency of 41%, which is widely used in the fields of biotechnol., biomedicine and so on. The entire bioluminescence (BL) process involves a series of complicated in-vivo chem. reactions. The BL is initiated by the enzymic oxidation of luciferin (LH2). However, the mechanism of the efficient spin-forbidden oxygenation is far from being totally understood. Via MD simulation and QM/MM calculations, this article describes the complete process of oxygenation in real protein. The oxygenation of luciferin is initiated by a single electron transfer from the trivalent anionic LH2 (L3-) to O2 to form 1[L•2-…O2•-]; the entire reaction is carried out along the ground-state potential energy surface to produce the dioxetanone (FDO-) via three transition states and two intermediates. The low energy barriers of the oxygenation reaction and biradical annihilation involved in the reaction explain this spin-forbidden reaction with high efficiency. This study is helpful for understanding the BL initiation of fireflies and the other oxygen-dependent bioluminescent organisms.

Molecules published new progress about Annihilation radiation. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Electric Literature of 2591-17-5.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Zhang, Ru’s team published research in Scientific Reports in 2020-12-31 | 2591-17-5

Scientific Reports published new progress about Aquatica lateralis. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Quality Control of 2591-17-5.

Zhang, Ru; He, Jinwu; Dong, Zhiwei; Liu, Guichun; Yin, Yuan; Zhang, Xinying; Li, Qi; Ren, Yandong; Yang, Yongzhi; Liu, Wei; Chen, Xianqing; Xia, Wenhao; Duan, Kang; Hao, Fei; Lin, Zeshan; Yang, Jie; Chang, Zhou; Zhao, Ruoping; Wan, Wenting; Lu, Sihan; Peng, Yanqiong; Ge, Siqin; Wang, Wen; Li, Xueyan published the artcile< Genomic and experimental data provide new insights into luciferin biosynthesis and bioluminescence evolution in fireflies>, Quality Control of 2591-17-5, the main research area is Lamprigera luciferin bioluminescence evolution.

Abstract: Fireflies are among the most charismatic insects for their spectacular bioluminescence, but the origin and evolution of bioluminescence remain elusive. Especially, the genic basis of luciferin (D-luciferin) biosynthesis and light patterns is largely unknown. Here, we present the high-quality reference genomes of two fireflies Lamprigera yunnana (1053 Mb) and Abscondita terminalis (501 Mb) with great differences in both morphol. and luminous behavior. We sequenced the transcriptomes and proteomes of luminous organs of two species. We created the CRISPR/Cas9-induced mutants of Abdominal B gene without luminous organs in the larvae of A. terminalis and sequenced the transcriptomes of mutants and wild-types. Combining gene expression analyses with comparative genomics, we propose a more complete luciferin synthesis pathway, and confirm the convergent evolution of bioluminescence in insects. Using experiments, the function of the firefly acyl-CoA thioesterase (ACOT1) to convert L-luciferin to D-luciferin was validated for the first time. Comparisons of three-dimension reconstruction of luminous organs and their differentially expressed genes among two species suggest that two pos. genes in the calcium signaling pathway and structural difference of luminous organs may play an important role in the evolution of flash pattern. Altogether, our results provide important resources for further exploring bioluminescence in insects.

Scientific Reports published new progress about Aquatica lateralis. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Quality Control of 2591-17-5.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Stroet, Marcus C M’s team published research in Contrast Media & Molecular Imaging in 2021 | 2591-17-5

Contrast Media & Molecular Imaging published new progress about Bioluminescent imaging. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Category: thiazole.

Stroet, Marcus C. M.; de Blois, Erik; Haeck, Joost; Seimbille, Yann; Mezzanotte, Laura; de Jong, Marion; Loewik, Clemens W. G. M.; Panth, Kranthi M. published the artcile< In vivo evaluation of gallium-68-labeled IRDye800CW as a necrosis avid contrast agent in solid tumors>, Category: thiazole, the main research area is gallium68 irdye800cw necrosis contrast agent solid tumor.

Necrosis only occurs in pathol. situations and is directly related to disease severity and, therefore, is an important biomarker. Tumor necrosis occurs in most solid tumors due to improperly functioning blood vessels that cannot keep up with the rapid growth, especially in aggressively growing tumors. The amount of necrosis per tumor volume is often correlated to rapid tumor proliferation and can be used as a diagnostic tool. Furthermore, efficient therapy against solid tumors will directly or indirectly lead to necrotic tumor cells, and detection of increased tumor necrosis can be an early marker for therapy efficacy. We propose the application of necrosis avid contrast agents to detect therapy-induced tumor necrosis. Herein, we advance gallium-68-labeled IRDye800CW, a near-IR fluorescent dye that exhibits excellent necrosis avidity, as a potential PET tracer for in vivo imaging of tumor necrosis. We developed a reliable labeling procedure to prepare [68Ga]Ga-DOTA-PEG4-IRDye800CW ([68Ga]Ga-1) with a radiochem. purity of >96% (radio-HPLC). The prominent dead cell binding of fluorescence and radioactivity from [68Ga]Ga-1 was confirmed with dead and alive cultured 4T1-Luc2 cells. [68Ga]Ga-1 was injected in 4T1-Luc2 tumor-bearing mice, and specific fluorescence and PET signal were observed in the spontaneously developing tumor necrosis. The i.p. injection of D-luciferin enabled simultaneous bioluminescence imaging of the viable tumor regions. Tumor necrosis binding was confirmed ex vivo by colocalization of fluorescence uptake with TUNEL dead cell staining and radioactivity uptake in dichotomized tumors and frozen tumor sections. Our presented study shows that [68Ga]Ga-1 is a promising PET tracer for the detection of tumor necrosis.

Contrast Media & Molecular Imaging published new progress about Bioluminescent imaging. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Category: thiazole.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Liu, Gui-Chun’s team published research in Photochemistry and Photobiology in 2020 | 2591-17-5

Photochemistry and Photobiology published new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Quality Control of 2591-17-5.

Liu, Gui-Chun; Dong, Zhi-Wei; Hou, Qing-Bai; He, Jin-Wu; Zhao, Ruo-Ping; Wang, Wen; Li, Xue-Yan published the artcile< Second Rhagophthalmid Luciferase Cloned from Chinese Glow-worm Menghuoius giganteus (Rhagophthalmidae: Elateroidea)>, Quality Control of 2591-17-5, the main research area is sequence luciferase mol cloning Rhagophthalmus Menghuoius.

The pH-insensitive beetle luciferases cloned from Rhagophthalmidae, Phengodidae, and Elateridae exhibit great potential application as reporter assays for monitoring gene expression. At present, however, only one luciferase has been reported from the enigmatic and predominantly Asian distributed luminous family Rhagophthalmidae. Here, we cloned the second rhagophthalmid luciferase from the Chinese glow-worm Menghuoius giganteus (Rhagophthalmidae: Elateroidea) by combining reverse transcription polymerase chain reaction (RT-PCR) with rapid amplification of complementary DNA ends (RACE). The luciferase consisted of 546 amino acids and showed high identity to that of Rhagophthalmus ohbai (90.4%). The recombinant M. giganteus luciferase was produced in vitro and exhibited significant bioluminescent activity under neutral conditions (pH 7.8), with low KM for D-luciferin (2.2μM) and ATP (53μM). Activity was highest at 10°C and inactivation occurred at 45°C. This luciferase showed pH-insensitivity and maximum emission spectrum at 560 nm. Phylogenetic analyses based on the deduced amino acids indicated a close relationship between the M. giganteus luciferase and that of R. ohbai. These results increase our understanding of rhagophthalmid luciferases and provide a new resource for the application of luciferases.

Photochemistry and Photobiology published new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Quality Control of 2591-17-5.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Wang, Chenchen’s team published research in Analytical Chemistry (Washington, DC, United States) in 2020-12-01 | 2591-17-5

Analytical Chemistry (Washington, DC, United States) published new progress about Bioluminescence (probe). 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, COA of Formula: C11H8N2O3S2.

Wang, Chenchen; Du, Wei; Zhang, Tong; Liang, Gaolin published the artcile< A Bioluminescent Probe for Simultaneously Imaging Esterase and Histone Deacetylase Activity in a Tumor>, COA of Formula: C11H8N2O3S2, the main research area is histone deacetylase esterase tumor imaging bioluminescent probe.

The monitoring of esterase (CES) and histone deacetylase (HDAC) activity in living cells has great potential for rapid diagnosis of malignant tumors. At present, using one bioluminescence (BL) probe to simultaneously detect (or image) these two enzymes’ activity in tumors has not been reported. Herein, a bioluminescence “”turn-on”” probe AcAH-Luc (6-acetamidohexanoic acid-D-luciferin) was rationally designed for simultaneously imaging CES and HDAC activity with excellent sensitivity and selectivity. AcAH-Luc was successfully applied in vitro to selectively detect CES and HDAC6, a subtype of HDAC, at a linear concentration range of 0-100 and 0-120 nM with limits of detection (LODs) of 0.495 and 1.14 nM, resp. In vivo results indicated that about 1/2 and 1/3 of the “”turn-on”” BL signal of AcAH-Luc was contributed by CES and HDAC activity in the tumors, resp. We envision that AcAH-Luc might be applied to simultaneously measure (and image) CES and HDAC activity in the clinic for assisting with the precise diagnosis of malignant tumors in the near future.

Analytical Chemistry (Washington, DC, United States) published new progress about Bioluminescence (probe). 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, COA of Formula: C11H8N2O3S2.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Viviani, Vadim R’s team published research in International Journal of Molecular Sciences in 2021 | 2591-17-5

International Journal of Molecular Sciences published new progress about Biological imaging. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Synthetic Route of 2591-17-5.

Viviani, Vadim R.; Bevilaqua, Vanessa R.; de Souza, Daniel R.; Pelentir, Gabriel F.; Kakiuchi, Michio; Hirano, Takashi published the artcile< A very bright far-red bioluminescence emitting combination based on engineered railroad worm luciferase and 6′-amino-analogs for bioimaging purposes>, Synthetic Route of 2591-17-5, the main research area is far red bioluminescence emitting luciferase amino analog bioimaging; Far-Red bioluminescence; NIR bioluminescence; bioimaging; biophotonics; luciferin amino-analogs.

Beetle luciferases produce bioluminescence (BL) colors ranging from green to red, having been extensively used for many bioanal. purposes, including bioimaging of pathogen infections and metastasis proliferation in living animal models and cell culture. For bioimaging purposes in mammalian tissues, red bioluminescence is preferred, due to the lower self-absorption of light at longer wavelengths by Hb, myoglobin and melanin. Red bioluminescence is naturally produced only by Phrixothrix hirtus railroad worm luciferase (PxRE), and by some engineered beetle luciferases. However, Far-Red (FR) and Near-IR (NIR) bioluminescence is best suited for bioimaging in mammalian tissues due to its higher penetrability. Although some FR and NIR emitting luciferin analogs have been already developed, they usually emit much lower bioluminescence activity when compared to the original luciferin-luciferases. Using site-directed mutagenesis of PxRE luciferase in combination with 6′-modified amino-luciferin analogs, we finally selected novel FR combinations displaying BL ranging from 636-655 nm. Among them, the combination of PxRE-R215K mutant with 6′-(1-pyrrolidinyl)luciferin proved to be the best combination, displaying the highest BL activity with a catalytic efficiency ~2.5 times higher than the combination with native firefly luciferin, producing the second most FR-shifted bioluminescence (650 nm), being several orders of magnitude brighter than com. AkaLumine with firefly luciferase. Such combination also showed higher thermostability, slower BL decay time and better penetrability across bacterial cell membranes, resulting in ~3 times higher in vivo BL activity in bacterial cells than with firefly luciferin. Overall, this is the brightest FR emitting combination ever reported, and is very promising for bioimaging purposes in mammalian tissues.

International Journal of Molecular Sciences published new progress about Biological imaging. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Synthetic Route of 2591-17-5.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Kikelj, D’s team published research in Science of Synthesis in 2002 | 96929-05-4

Science of Synthesis published new progress about Cyclization. 96929-05-4 belongs to class thiazole, and the molecular formula is C12H18N2O4S, Quality Control of 96929-05-4.

Kikelj, D.; Urleb, U. published the artcile< Product class 17: thiazoles>, Quality Control of 96929-05-4, the main research area is review thiazole preparation.

A review of synthetic methods to prepare thiazoles as well as reactive modifications of thiazole moieties.

Science of Synthesis published new progress about Cyclization. 96929-05-4 belongs to class thiazole, and the molecular formula is C12H18N2O4S, Quality Control of 96929-05-4.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Endo, Mizuki’s team published research in International Journal of Molecular Sciences in 2020 | 2591-17-5

International Journal of Molecular Sciences published new progress about Bioluminescence. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Electric Literature of 2591-17-5.

Endo, Mizuki; Ozawa, Takeaki published the artcile< Advanced bioluminescence system for in vivo imaging with brighter and red-shifted light emission>, Electric Literature of 2591-17-5, the main research area is review luciferase luciferin bioluminescence resonance energy transfer; bioluminescence; bioluminescence resonance energy transfer; luciferase; luciferin.

A review. In vivo bioluminescence imaging (BLI), which is based on luminescence emitted by the luciferase-luciferin reaction, has enabled continuous monitoring of various biochem. processes in living animals. Bright luminescence with a high signal-to-background ratio, ideally red or near-IR light as the emission maximum, is necessary for in vivo animal experiments Various attempts have been undertaken to achieve this goal, including genetic engineering of luciferase, chem. modulation of luciferin, and utilization of bioluminescence resonance energy transfer (BRET). In this review, we overview a recent advance in the development of a bioluminescence system for in vivo BLI. We also specifically examine the improvement in bioluminescence intensity by mutagenic or chem. modulation on several beetle and marine luciferase bioluminescence systems. We further describe that intramol. BRET enhances luminescence emission, with recent attempts for the development of red-shifted bioluminescence system, showing great potency in in vivo BLI. Perspectives for future improvement of bioluminescence systems are discussed.

International Journal of Molecular Sciences published new progress about Bioluminescence. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Electric Literature of 2591-17-5.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica