Love, Anna C’s team published research in Cell Chemical Biology in 2020-08-20 | 2591-17-5

Cell Chemical Biology published new progress about Bioluminescence. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Application In Synthesis of 2591-17-5.

Love, Anna C.; Prescher, Jennifer A. published the artcile< Seeing (and Using) the Light: Recent Developments in Bioluminescence Technology>, Application In Synthesis of 2591-17-5, the main research area is review luciferase luciferin bioluminescence optical imaging; bioluminescence; imaging; luciferase; luciferin; optogenetics.

A review. Bioluminescence has long been used to image biol. processes in vivo. This technol. features luciferase enzymes and luciferin small mols. that produce visible light. Bioluminescent photons can be detected in tissues and live organisms, enabling sensitive and noninvasive readouts on physiol. function. Traditional applications have focused on tracking cells and gene expression patterns, but new probes are pushing the frontiers of what can be visualized. The past few years have also seen the merger of bioluminescence with optogenetic platforms. Luciferase-luciferin reactions can drive light-activatable proteins, ultimately triggering signal transduction and other downstream events. This review highlights these and other recent advances in bioluminescence technol., with an emphasis on tool development. We showcase how new luciferins and engineered luciferases are expanding the scope of optical imaging. We also highlight how bioluminescent systems are being leveraged not just for sensing-but also controlling-biol. processes.

Cell Chemical Biology published new progress about Bioluminescence. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Application In Synthesis of 2591-17-5.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Ren, Qi’s team published research in Synlett in 2008-09-15 | 96929-05-4

Synlett published new progress about Aldol addition, stereoselective. 96929-05-4 belongs to class thiazole, and the molecular formula is C12H18N2O4S, Recommanded Product: Ethyl 2-(((tert-butoxycarbonyl)amino)methyl)thiazole-4-carboxylate.

Ren, Qi; Dai, Lu; Zhang, Hui; Tan, Wenfei; Xu, Zhengshuang; Ye, Tao published the artcile< Total synthesis of largazole>, Recommanded Product: Ethyl 2-(((tert-butoxycarbonyl)amino)methyl)thiazole-4-carboxylate, the main research area is largazole asym total synthesis.

The stereocontrolled total synthesis of largazole was accomplished starting from 3-[(tert-butyldimethylsilyl)oxy]propanol in 5.8% overall yield, unambiguously confirming its structure. Key steps included the use of the Nagao thiazolidinethione auxiliary for a diastereoselective acetate aldol reaction, thiazoline-thiazole formation, and macrolactamization by use of the Mukaiyama reagent.

Synlett published new progress about Aldol addition, stereoselective. 96929-05-4 belongs to class thiazole, and the molecular formula is C12H18N2O4S, Recommanded Product: Ethyl 2-(((tert-butoxycarbonyl)amino)methyl)thiazole-4-carboxylate.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Stroet, Marcus C M’s team published research in Contrast Media & Molecular Imaging in 2021 | 2591-17-5

Contrast Media & Molecular Imaging published new progress about Bioluminescent imaging. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, HPLC of Formula: 2591-17-5.

Stroet, Marcus C. M.; de Blois, Erik; Haeck, Joost; Seimbille, Yann; Mezzanotte, Laura; de Jong, Marion; Loewik, Clemens W. G. M.; Panth, Kranthi M. published the artcile< In vivo evaluation of gallium-68-labeled IRDye800CW as a necrosis avid contrast agent in solid tumors>, HPLC of Formula: 2591-17-5, the main research area is gallium68 irdye800cw necrosis contrast agent solid tumor.

Necrosis only occurs in pathol. situations and is directly related to disease severity and, therefore, is an important biomarker. Tumor necrosis occurs in most solid tumors due to improperly functioning blood vessels that cannot keep up with the rapid growth, especially in aggressively growing tumors. The amount of necrosis per tumor volume is often correlated to rapid tumor proliferation and can be used as a diagnostic tool. Furthermore, efficient therapy against solid tumors will directly or indirectly lead to necrotic tumor cells, and detection of increased tumor necrosis can be an early marker for therapy efficacy. We propose the application of necrosis avid contrast agents to detect therapy-induced tumor necrosis. Herein, we advance gallium-68-labeled IRDye800CW, a near-IR fluorescent dye that exhibits excellent necrosis avidity, as a potential PET tracer for in vivo imaging of tumor necrosis. We developed a reliable labeling procedure to prepare [68Ga]Ga-DOTA-PEG4-IRDye800CW ([68Ga]Ga-1) with a radiochem. purity of >96% (radio-HPLC). The prominent dead cell binding of fluorescence and radioactivity from [68Ga]Ga-1 was confirmed with dead and alive cultured 4T1-Luc2 cells. [68Ga]Ga-1 was injected in 4T1-Luc2 tumor-bearing mice, and specific fluorescence and PET signal were observed in the spontaneously developing tumor necrosis. The i.p. injection of D-luciferin enabled simultaneous bioluminescence imaging of the viable tumor regions. Tumor necrosis binding was confirmed ex vivo by colocalization of fluorescence uptake with TUNEL dead cell staining and radioactivity uptake in dichotomized tumors and frozen tumor sections. Our presented study shows that [68Ga]Ga-1 is a promising PET tracer for the detection of tumor necrosis.

Contrast Media & Molecular Imaging published new progress about Bioluminescent imaging. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, HPLC of Formula: 2591-17-5.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Endo, Mizuki’s team published research in International Journal of Molecular Sciences in 2020 | 2591-17-5

International Journal of Molecular Sciencespublished new progress about Bioluminescence. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Formula: C11H8N2O3S2.

Endo, Mizuki; Ozawa, Takeaki published the artcile< Advanced bioluminescence system for in vivo imaging with brighter and red-shifted light emission>, Formula: C11H8N2O3S2, the main research area is review luciferase luciferin bioluminescence resonance energy transfer; bioluminescence; bioluminescence resonance energy transfer; luciferase; luciferin.

A review. In vivo bioluminescence imaging (BLI), which is based on luminescence emitted by the luciferase-luciferin reaction, has enabled continuous monitoring of various biochem. processes in living animals. Bright luminescence with a high signal-to-background ratio, ideally red or near-IR light as the emission maximum, is necessary for in vivo animal experiments Various attempts have been undertaken to achieve this goal, including genetic engineering of luciferase, chem. modulation of luciferin, and utilization of bioluminescence resonance energy transfer (BRET). In this review, we overview a recent advance in the development of a bioluminescence system for in vivo BLI. We also specifically examine the improvement in bioluminescence intensity by mutagenic or chem. modulation on several beetle and marine luciferase bioluminescence systems. We further describe that intramol. BRET enhances luminescence emission, with recent attempts for the development of red-shifted bioluminescence system, showing great potency in in vivo BLI. Perspectives for future improvement of bioluminescence systems are discussed.

International Journal of Molecular Sciencespublished new progress about Bioluminescence. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Formula: C11H8N2O3S2.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Yu, Xiaoling’s team published research in Tetrahedron in 2018-02-01 | 96929-05-4

Tetrahedronpublished new progress about (Fluorenylmethoxy)carbonyl group. 96929-05-4 belongs to class thiazole, and the molecular formula is C12H18N2O4S, COA of Formula: C12H18N2O4S.

Yu, Xiaoling; Zhang, Bingbing; Shan, Guangsheng; Wu, Yue; Yang, Feng-Ling; Lei, Xinsheng published the artcile< Synthesis of the molecular hybrid inspired by Largazole and Psammaplin A>, COA of Formula: C12H18N2O4S, the main research area is macrocyclic depsipeptide hybrid thiol synthesis HDAC inhibitor antitumor agent; natural product largazole psammaplin A drug design; methylcysteine acylation cyclocondensation thiazole thiazoline hydrolysis; malic acid cyclocondensation trichloro ethanediol esterification amidation; macrolactamization protective group.

One important class of HDAC (histone deacetylation enzymes) inhibitors is the sulfur-containing marine natural products with structural diversity. Inspired by two structurally distinguishing examples, Largazole and Psammaplin A, which possess macrocyclic depsipeptide and simple linear amide scaffold resp., we designed one novel mol. hybrid by replacing the alkene moiety in Largazole with a semirigid amide bond. This hybrid compound has been synthesized from L-malic acid in 10 steps with an overall yield of 7%. The preliminary biol. assays suggest that the replacement of trans olefin moiety with amide bond will lead to an unbeneficial effect on the inhibition against HDACs.

Tetrahedronpublished new progress about (Fluorenylmethoxy)carbonyl group. 96929-05-4 belongs to class thiazole, and the molecular formula is C12H18N2O4S, COA of Formula: C12H18N2O4S.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Liu, Gui-Chun’s team published research in Photochemistry and Photobiology in 2020 | 2591-17-5

Photochemistry and Photobiologypublished new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Quality Control of 2591-17-5.

Liu, Gui-Chun; Dong, Zhi-Wei; Hou, Qing-Bai; He, Jin-Wu; Zhao, Ruo-Ping; Wang, Wen; Li, Xue-Yan published the artcile< Second Rhagophthalmid Luciferase Cloned from Chinese Glow-worm Menghuoius giganteus (Rhagophthalmidae: Elateroidea)>, Quality Control of 2591-17-5, the main research area is sequence luciferase mol cloning Rhagophthalmus Menghuoius.

The pH-insensitive beetle luciferases cloned from Rhagophthalmidae, Phengodidae, and Elateridae exhibit great potential application as reporter assays for monitoring gene expression. At present, however, only one luciferase has been reported from the enigmatic and predominantly Asian distributed luminous family Rhagophthalmidae. Here, we cloned the second rhagophthalmid luciferase from the Chinese glow-worm Menghuoius giganteus (Rhagophthalmidae: Elateroidea) by combining reverse transcription polymerase chain reaction (RT-PCR) with rapid amplification of complementary DNA ends (RACE). The luciferase consisted of 546 amino acids and showed high identity to that of Rhagophthalmus ohbai (90.4%). The recombinant M. giganteus luciferase was produced in vitro and exhibited significant bioluminescent activity under neutral conditions (pH 7.8), with low KM for D-luciferin (2.2μM) and ATP (53μM). Activity was highest at 10°C and inactivation occurred at 45°C. This luciferase showed pH-insensitivity and maximum emission spectrum at 560 nm. Phylogenetic analyses based on the deduced amino acids indicated a close relationship between the M. giganteus luciferase and that of R. ohbai. These results increase our understanding of rhagophthalmid luciferases and provide a new resource for the application of luciferases.

Photochemistry and Photobiologypublished new progress about Amino acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Quality Control of 2591-17-5.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Pena, S’s team published research in MedChemComm in 2014 | 96929-05-4

MedChemCommpublished new progress about Antimalarials. 96929-05-4 belongs to class thiazole, and the molecular formula is C12H18N2O4S, Formula: C12H18N2O4S.

Pena, S.; Fagundez, C.; Medeiros, A.; Comini, M.; Scarone, L.; Sellanes, D.; Manta, E.; Tulla-Puche, J.; Albericio, F.; Stewart, L.; Yardley, V.; Serra, G. published the artcile< Synthesis of cyclohexapeptides as antimalarial and anti-trypanosomal agents>, Formula: C12H18N2O4S, the main research area is cyclohexa peptide synthesis antimalarial antitrypanosomal agent structure activity; solid phase peptide synthesis macrocyclization.

Cyclohexapeptide analogs of natural products were obtained in very good yields by a combination of solid-phase peptide synthesis, for the linear peptide, and solution cyclization. The activities against Plasmodium falciparum K1, Trypanosoma brucei brucei and murine macrophages (cell line J774) of these novel compounds and azolic macrocycles, previously reported by us, were evaluated. Seven macrocycles showed submicromolar activities against Plasmodium falciparum K1 and a high selectivity (SI > 125) for the parasite. In addition, two compounds displayed one digit micromolar EC50 against T. brucei brucei and satisfactory selectivity (SI 82 and 95). Preliminary structure-activity relationships are presented.

MedChemCommpublished new progress about Antimalarials. 96929-05-4 belongs to class thiazole, and the molecular formula is C12H18N2O4S, Formula: C12H18N2O4S.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Hansen, Ida K O’s team published research in International Journal of Molecular Sciences in 2020 | 2591-17-5

International Journal of Molecular Sciencespublished new progress about Anti-inflammatory agents. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Name: (S)-2-(6-Hydroxybenzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid.

Hansen, Ida K. O.; Loevdahl, Tomas; Simonovic, Danijela; Hansen, Kine O.; Andersen, Aaron J. C.; Devold, Hege; Richard, C. Eline S. M.; Andersen, Jeanette H.; Strom, Morten B.; Haug, Tor published the artcile< Antimicrobial activity of small synthetic peptides based on the marine peptide turgencin a: prediction of antimicrobial peptide sequences in a natural peptide and strategy for optimization of potency>, Name: (S)-2-(6-Hydroxybenzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid, the main research area is turgencin antimicrobial peptide Escherichia Staphylococcus; Arctic; Synoicum turgens; antimicrobial; ascidian; peptide; synthetic.

Turgencin A, a potent antimicrobial peptide isolated from the Arctic sea squirt Synoicum turgens, consists of 36 amino acid residues and three disulfide bridges, making it challenging to synthesize. The aim of the present study was to develop a truncated peptide with an antimicrobial drug lead potential based on turgencin A. The experiments consisted of: (1) sequence anal. and prediction of antimicrobial potential of truncated 10-mer sequences; (2) synthesis and antimicrobial screening of a lead peptide devoid of the cysteine residues; (3) optimization of in vitro antimicrobial activity of the lead peptide using an amino acid replacement strategy; and (4) screening the synthesized peptides for cytotoxic activities. In silico anal. of turgencin A using various prediction software indicated an internal, cationic 10-mer sequence to be putatively antimicrobial. The synthesized truncated lead peptide displayed weak antimicrobial activity. However, by following a systematic amino acid replacement strategy, a modified peptide was developed that retained the potency of the original peptide. The optimized peptide StAMP-9 displayed bactericidal activity, with minimal inhibitory concentrations of 7.8 μg/mL against Staphylococcus aureus and 3.9 μg/mL against Escherichia coli, and no cytotoxic effects against mammalian cells. Preliminary experiments indicate the bacterial membranes as immediate and primary targets.

International Journal of Molecular Sciencespublished new progress about Anti-inflammatory agents. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Name: (S)-2-(6-Hydroxybenzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Stress, Cedric J’s team published research in Angewandte Chemie, International Edition in 2019 | 96929-05-4

Angewandte Chemie, International Editionpublished new progress about Combinatorial library (DNA-encoded). 96929-05-4 belongs to class thiazole, and the molecular formula is C12H18N2O4S, Category: thiazole.

Stress, Cedric J.; Sauter, Basilius; Schneider, Lukas A.; Sharpe, Timothy; Gillingham, Dennis published the artcile< A DNA-Encoded Chemical Library Incorporating Elements of Natural Macrocycles>, Category: thiazole, the main research area is DNA encoded library macrocycle compound; DNA chemistry; DNA-encoded libraries; Lipinski rules; chemical libraries; macrocycles.

Here the authors show a seven-step chem. synthesis of a DNA-encoded macrocycle library (DEML) on DNA. Inspired by polyketide and mixed peptide-polyketide natural products, the library was designed to incorporate rich backbone diversity. Achieving this diversity, however, comes at the cost of the custom synthesis of bifunctional building block libraries. This study outlines the importance of careful retrosynthetic design in DNA-encoded libraries, while revealing areas where new DNA synthetic methods are needed.

Angewandte Chemie, International Editionpublished new progress about Combinatorial library (DNA-encoded). 96929-05-4 belongs to class thiazole, and the molecular formula is C12H18N2O4S, Category: thiazole.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica

Imadul Islam, Sk’s team published research in Journal of Photochemistry and Photobiology, A: Chemistry in 2021-01-01 | 2591-17-5

Journal of Photochemistry and Photobiology, A: Chemistrypublished new progress about Fluorescence. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Related Products of 2591-17-5.

Imadul Islam, Sk; Das, Arindam; Mitra, Rajib Kumar published the artcile< Excited state proton transfer in reverse micelles: Effect of temperature and a possible interplay with solvation>, Related Products of 2591-17-5, the main research area is reverse micelle excited state proton transfer temperature solvation.

Excited state proton transfer (ESPT) is a fundamental process of immense biophys. interest and considering the heterogeneity existing in real biol. environments we investigate the process in a bio-mimicking reverse micellar (RM) systems. We herein report a detailed study on the ESPT process of a photo-acid D-luciferin at different temperatures in RMs composed of: anionic AOT, cationic DDAB, and neutral Igepal-520 using steady state and time resolved fluorescence measurements. We found that with increasing temperature both solvation as well as the ESPT rate accelerate, however, the extent of the increase is RM specific, and they even not complement each other. Our study clearly identifies the pivotal role of solvation, specially in micro-heterogeneous environments, to guide the ESPT process.

Journal of Photochemistry and Photobiology, A: Chemistrypublished new progress about Fluorescence. 2591-17-5 belongs to class thiazole, and the molecular formula is C11H8N2O3S2, Related Products of 2591-17-5.

Referemce:
Thiazole | C3H3NS – PubChem,
Thiazole | chemical compound | Britannica